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COMPUTATIONAL COMPARISONS FOR METHOD OF CENTERS
OF GRAVITY OF VERTICES

TATIANA 1. ENCHEVA

When solving nonlinear programming problems with objective functions whose evaluation is rather
difficult and complex the question of minimizing the step number comes to the fore. Among methods
optimal with respect to the number of iterations there are some methods of central sections. The method
of centers of gravity of vertices has by now no theoretical justification of its convergence. Thus the expe-
rimental testing becomes rather important. In the preseat paper some conclusions are made based
on extensive experimental material. They reveal the practical efficiency of the method and its closeness
to optimal methods. Moreover, this method and some other known methods of central sections are con-
sidered and compared to a certain extent.

1. Introduction. The methods of central sections (MCS) were introduced in [1]
as a tool for solving convex programming problems with small dimension and labour
consuming evaluation of the objective function. The interest in these methods has grown
considerably in the recent years. On the one hand, the scope of applicability of MCS
has been extended over the class of quasi-convex objective functions [2, 3]. On the other
hand, there are some very important practical problems (e. g. the block convex pro-
gramming problem and the linear time-optimal control problem [4]) for which the use
of MCS might be the most advisable.

The great variety of MCS can be separated into two groups — methods with inclu-
sions and methods without inclusions. To the first group belong the ellipsoid
method (EM) [5, 6], the simplex method (SM) [7, 8] and their numerous modifications.
Among the methods of the second group is the first MCS — the method of centers
of gravity (MCG) [1], the method of inscribed ellipsoids (MIE) [9], the stochastic MCS,
the method of centers of gravity of vertices (MCGV) [10]. While the methods with
inclusions have been tested even experimentally (see e. g. [11, 12]), the methods
without inclusions have not been thoroughly studied in this respect. This is due
to the fact that they comprise difficult geometrical constructions which hamper their
computer realization. However, most of these methods are optimal with respect
to the number of iterations (see [13, 9]). Hence, they play an important role when
solving problems with an objective function being hard for computation.

2. The scheme of the MCGV. First let us describe the general iterationof all MCS.
Consider the problem of minimizing a continuous quasi-convex function f over a convex
compact My=R" (int M+ @). Denote by Xuis the arbitrary minimum point and by (] f(x)
the quasi-gradient (3] of f at the arbitrary point x¢M,. Let M,, k=0,1,..., be the lo-
calizer (i. e. the domain, which contains the point xm) after % iterations. On the recur-
rent £+ 1 iteration a certain “central” point x,¢ M, (more often the center of gravity
of M,) is selected. Next f(x,) and [ f(x,) are computed. If (] f{x;)=0, then x,=Xu,
i. e. the problem is solved. Otherwise, a part of M, lying in the hali-space
(1 f(x,), x—2x,)>0 and not containing minimum points is cut off,

For the deterministic MCS (in particular for MCG, MIE, EM, SM) it is proved
that drawing cutt:ng hyperplanes through some localizer points being central in a cer-
tain respect one can achieve that the volumes of the localizers decrease exponentially.
Furthermore, small localizer volumes imply small errors with respect to the func-
tional [13, 3].
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The MCGV is intended to solve quasi-convex programming problems for which the initial
localizer M, (and therefore the subsequent localizers M,) is a convex polytope. As a central

point of the polytope M we choose either the center of gravity of its vertices vy, Vs, ..., U

2(M)=m=' T 7, or its stochastic image 2(M, a)= X a0, where a=(0,, 0y, . .., 0p)isaran-
i=1 i=1

dom point uniformly distributed in the simplex ¥ e=1, ¢=0, i=1, 2,...m. We
=1

shall speak of a deterministic (2(M)) and a randomized (2, M(a)) versions of
the MCGV.

One of the aims of the randomized version of the MCGV is to obtain a flexible
scheme, which can be stochastically varied (at the expense of randomness of a). In par-
ticular, this version can be used to minimize functions which are not quasi-convex.
In this case the point xmin can be found after a sequence of “trials”. Here the MCGV
behaves to a certain extent like the methods of random search which mainly use a gra-
dient descent instead of central sections.

The main advantage of the MCGV is the simple way of finding a central point
if the vertices of the polytope are known. However, from a practical point of view
the problem of finding these vertices is difficult enough in itself (though it is easier
than the problem of finding the exact center of gravity of the polytope). On the other
hand, it is impossible to obtain a theoretical estimate of the volume contraction
of the localizers (if 7>2) for the MCGV. This fact might be illustrated if a pyramid
with a great number of base vertices and a section parallel to the base is considered.
Thus, the results of numerical experiments gain great significance.

3. Results of the computational experiments. The computational realization
of the MCGV is accomplished by using the organization of the data base proposed
in [14]. It is intended to be used for solving a sequence of standard problems refer-
ring to convex polytopes in a mode being quite rapid and efficient with respect
to the memory capacity used. The programs are written in FORTRAN. All the experi-
ments have been performed on an IBM 4341 model M2 computer. The computer
executes about 1.5 million machine instructions per second.

Seventeen well known {est functions [15, 16] have been used for the experiments.
The problems of minimizing f on certain “parallelepipeds” M,=R" have been_ solved.
The number of problems solved has been 335. The computational procedure terminates
when the inequality f(x,)— f(xmin)<<10~'! has been satisfied for the current point x,.
The computational results for all the test problems are given in Tables 1 and 2,
where the notations are as fcllows:

m — number of solved problems;

kmin — minimal number of iterations;

ks — average number of iterations;

ts — average time (in seconds) for solving one problem;

tsi — average time (in seconds) for performing one iteration.

With the two versions of the MCGV it turned out that for the group of problems
under consideration the average number of iterations required to reach the error level
of 10—11 showed an increase with respect to 7, which is close to the linear one
(especially for the version z(M)). In Fig. 1 the values ks=#ks(n) for the two versions
and the approximating straight lines constructed by the method of least squares are
given. The respective equations are as follows:

k(n)=31.3497—23.682 (for 2(M));
k(n)=236.160n—14.875 (for 2(M, a)).

Fig. 1 shows that the linear approximation is very good for the version 2(M); the quality
of the linear approximation is a bit worse for the version z(M, ).



190 T. Encheva

Table |l

Average results of solving the problems to within 10! by the
version z (M)

-
n m | kmin ks ) ts ’ tsi
2 30 25 39 0.192 0.00493
3 30 42 71 1.021 0.01431
4 25 56 100 4.131 0.04126
5 10 81 134 25.971 0.19410
Table 2

Average results of solving the problems to within 10— by the
version z (M, a)

n m kmin ks ts tsi

2 80 21 53 0.335 0.00636
3 80 67 105 1.981 0.01893
4 50 79 122 9.497 0.07769
5 30 123 167 46.751 0.27950

Let us assume that the linearly increasing rate of ks as a function of n obtained
empirically for a comparatively not large range of dimensions reflects the real increase
of ks(n) on the whole. This fact can be interpreted as follows: with the MCGV
the volumes of the localizers decrease (on the average) geometrically with a ratio
independent of n. This shows that in practice the MCGV, like the MCG, behaves
as an optimal method with respect to the number of iterations. Recall that, for example,
with the EM the volumes of the localizers decrease geometrically with a ratio approxi-
mately equal to 1 —1/2n; respectively, the number of the iterations increases not linearly
with respect to n, but as const. 7%

Now let us discuss the mean time fsi spent for one iteration with respect
to the dimension n approximating #si(n) by an exponential curve. Respectively InZsi(n)
is to be approximated by a linear function of n. The results of the approximation obtai-
ned by the method of least squares are presented on Fig. 2 and show that the increase
of In£si(n) is close enough to the linear one (naturally, in the examined range of valu-
es of n). The equations of the approximating straight lines are as follows:

t(n)=1.208n—-7.824 (for 2(M));
H(n)=1.276n—7.680 (for 2(M, w)).

For comparison note that with the MIE the time for one iteration grows as a poly-
nomial in n. Thus, for great n the MIE will be less labour consuming than MCGV
(if we assume that the exponential dependence remains valid for great n as well).
In this connection the purely practical aspect becomes quite important. The high
power (n%) with the MIE and the exponential nature of the labour consumption
increase for one iteration assumed with the MCGV show that the two methods
would be realizable only for not large n. As shown by Tables 1 and 2 the average
time for one iteration with the two MCGV versions grows 40 times when n increases
from 2 to 5. On the other hand, n* grows more than 1500 times when n increases
from 2 to 5. Thus, we can suppose that MCGV might work more rapidly than MIE.
(Nevertheless, everything mentioned above does not mean that the theoretical signifi-
cance of MIE is less important).
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Fig. 1. Average number of iterations as a Fig. 2. Increase of the average time for one itera-
function of the problem dimension n tion as a function of the problem dimension n

Now let us compare the results obtained when using the two MCGV versions
Tables 1 and 2 and the approximating functions given above show that the deterministic
version is more efficient than the randomized one. The number of iterations required
by the version 2z(M) is about 1.3 times less than that required by the version 2(M, a).
The time spent for one iteration with the version 2(M) is about 1.5 times less than
that with the version z(M, @). Thus, if it is known in advance that f is quasi-convex
in My, in particular convex, then the use of the version 2(M, a) is less preferable than
that of the version 2(M). On the other hand, if there is lack of exact information
about the required properties of f, then the randomized version, as mentioned above,
might be useful for solving the problem.
~ Finally let us compare the number of iterations actually performed through the ver-
sions 2(M) and 2(M, a) with the upper bounds for a number of iterations for the fol-
lowing MCS: MCG, MIE, EM, SM. We have considered test problems of one and

the same type, namely the problems of minimizing the functions il X2 and i xy/k!,
he=1

Ro= & =
n=3,4,5, 6 over a certain “parallelepiped”. The last two columns of Tables 3 and 4
comprise the numbers of iterations practically performed by the versions 2(M) and (M, «a)
(the randomized version has been used twice and the average number of iterations
is shown in the tables). Two upper estimates for the number of iterations obtained
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Table 3

n
Number of iterations needed to minimize fanctions Z .rz (n=3, 4, 5, 6) to within 10—*
k=1

‘ MCGV
n MCG MIE EM SM -
z (M) ] z (M, a)

3 198 533 499 1591 65 103
101 273 255 814

4 264 710 908 3817 56 125
137 367 469 1973

5 329 883 1431 7463 115 149
169 455 738 3848

6 402 1079 2117 13172 135 146
208 557 1094 6805

Table 4

n
Number of iterations needed to minimize functions z xﬁ/k! (n=3, 4, 5, 6) to withinl(—
k=1

i MCGV
n MCG | MIE EM SM
. z (M) z (M a)
3 194 522 489 1560 60 103
101 273 255 14
4 257 690 882 3710 84 126
137 367 469 1973
5 317 852 1380 7198 97 125
169 455 738 3848
6 385 1035 2021 12635 17 139
208 557 1094 6805

by the formulae from [13] and [3] respectively are given in columns II-V for each
method. In all cases the estimate for the number of iterations obtained by the second
formula is significantly smaller (approximately twice) than the estimate obtained by
the first formula. This can be explained by the fact that in the test problems consi-
dered x.in has been a stationary point (see [3] for more details).

As it is seen from Tables 3 and 4 the number of iterations needed for the ver-
sions z(M) and 2(M, a) is essentially smaller than that for the other methods (even if
we consider the better of the two estimates given). This can be explained by two
reasons. First, we compare the actual number of iterations with the upper estimates.
Probably that might be the explanation for the “success” of the MCGV compared with
that of the MCG. The gap between the actual number of iterations and the upper
estimates is remarkably great with SM. (Note that in practice the number of iterations
for SM is usually less than that for EM). The other reason for the MCGV success
is evidently its practical efficiency.

4. Conclusion. The experiments performed allow us to assume that the MCGV
is practically efficient and surpasses the majority of known MCS for the problems with
dimension n<;6. What concerns the practical efficiency we naturally have in view
problems with values of f and () f being hard to compute. Test functions defined
by simple analytical expressions are not typical at all. Nevertheless, we have chosen
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them so as to carry out a vast number of experiments within a reasonable
computer time. An illustration of a problem being hard with respect to computing
the values of f and [ f and being important with regard to its applica-
tion is the linear time-optimal control problem [4] mentioned above. It can be reduced
to the problem of minimizing a certain quasi-convex function f. This function is described
implicitly, but the value of f(x) and the direction of [ f(x) might be computed in a way
which is quite labour consuming even for problems whose dimension is not large.

The statistical conclusions about the practical efficiency of the MCGV are based
on experimental data and they should not be taken for granted. On the other hand,
it is known that the practical eificiency of the algorithms is often shown more precisely
through experimental data than through theoretical estimations (the simplex method
in linear programming is the most typical example of this kind). Furthermore, we would
like to point out that to prove theoretically the relations found empirically might be
very difficult. It is impossible to obtain a deterministic estimate for the rate of redu-
cing the localizers volumes with MCGV for n>2, which has been illustrated by the simple
counter-example mentioned above. The rigorous proof of the problem is naturally con-
nected with its probabilistic interpretation. Moreover, it would be necessary to put some
additional restrictions on the objective function. Treating the problem in such a way
seems to be rather problematic.

Acknowledgements. The author would like to thank A. Ju. Levin and D. L. Vandev
for their help and guidance.

REFERENCES

—

10. Jlesun. OG oaHoM aaroputve MAHHMM3AUMH BmNykasix ¢ysguui. Jowx.e. AH CCCP, 160,
1965, 6, 1241—1243.

C. Hemuposcxkun, J. b. 1Oaus. HahopMaunoHsas CAOKHOCT: MaTeMaTHYECKOTO MPOrpaMMu-
poBauus. Texxuveckan xubepwemuxa, 1, 1983, 88—117.

I. Encheva, A. Yu Levin. Central sections in quasi-convex programming. C. R. Acad.
Bulg. Sci., 42, 1989, 11, 39-42.

I. Encheva, A. Yu. Levin. Central sections in linear time-optimal control problems. C. R.
Acad. Bulg. Sci., 43, 1990, 1, 33-37.

B. I0auu, A. C. Hemuposckuit. Hahopmaunonuas CI0KHOCTs H 3PPeKTHBHBIE MCTOBI pe-
LWEeHHS BHINYKABIX SKCTPEMAAbHBIX 3a1a4. IJKOHOMuKka u mamem memodw, 12, 1976, 2, 357—369.

3. Ulop. Meroas OTCeueHHsi C PaCTSIKEHHEM NPOCTPAHCTEA AR PELleHHs 3a1ay BIMYKAOTO Mpo-
rpammuposanns. Kubepwemuxa, 1, 1977, 94—95.

Yamnitsky, L. A, Levin. An old linear programming algorithm runs in polgnomial time
gg;d Ann. Symp. Found. Comput. Sci, Chicago, IIl., 3-5 Nov., 1982. Silver Spring, 1982,

-328.

A. Anexcanapos E. L Auundepos B. 1. Byaratos K wmeronam uesTpupoBanssix
oTcedennit. Tesucw N0KA. XKOHG. MO MaTeMm. mporpammuposanino. Csepaiosck, 1981, 162—163.

9.C. Il. Tapacos, JlL. I Xauusu HU. H paux. Meroa snucanHbix sasuncounos. JoxA4.

AH CCCP, 298, 1988, 5, 1081—1085.
10. T. I. Encheva, A. Ju. Levin, D. L. Vandev. On computationally implementable variants
of the method of centers of gravity. Mathematica Balkanica, 2, 1988, 2-3, 156-164.
1. G. Ecker, M. Kupferschmid. A computational comparison of several nonlinear
F

=80 > >

R
=

@

®
-

grogramming algorithms. Report OR-S-82-2, New York, Rensselaer Polytechnic Institute.
roy, 1982.

12.P. F. Pickel. An update on the allipsoid algorithm. Discrete geometry and convexity. Annals of
) the New York Acad. of Sci., 440, 1985, 361-380.
1. 5. T. Moank. Bsexewwe » onrummusauno. Mocksa, 1983.
14. T. I. Encheva, D. L. Vandev. Maintenance of a polylope in the computer memory. Proceed.
of XIII Nat. School on Appl. of Math. in Techn., Varna, 30 Aug.-6 Sept., 1987, 183-186.
15. 11: Xummean6aay. [Npukiainoe nermweiinoe nporpammmuposanue. Mocksa, 1975.
16. W. Hock, K. Sch lttEow ski. Test examples for nonlinear programming codes. Lecture Notes

in Economics and Mathematical Systems. Berlin, 187, 1981,

Bulgarian Academy of Sciences Received 27.09.1969
nstitute of Mathematics
1090 Sofia, P. O. Box 373.

I3 Cepauxa, ku. 3—4



