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CONVERGENCE OF SUCCESSIVE APPROXIMATION FOR PARABOLIC PARTIAL
DIFFERENTIAL EQUATIONS WITH ADDITIVE WHITE NOISE

RALF MANTHEY

The convergence of the successive approximation procedure for a stochastic partial differentia
equation with an additive Gaussian space-lime white noise is considered. Conditions which ensure this
convergence are given, They are weaker than the usual Lipschitz conditions.

1. Introduction. Consider the formal Cauchy problem

© S ult, )=, 0+ flt, D) +OL(E, ), 0, xR
u(0, x)=uyx), x¢€R.

Here f: R—R is a nonlinear function in general and { denotes a space-time Gaussian
white noise, i. e. a centered 2’ (R) valued Gaussian random variable with covariance
functional E{(9)C(v)=(9, V), ¢, v€2(R.XR). The notation 2’ is used for the Schwartz
space of distributions, and (.,.) denotes the inner product in Ly(R; }(R). The noise intensity
o represents a nonnegative constant.

Let (Q, #,P) be a complete probability space and introduce the class %R, xR)
of such Borel sets A in R.XR whose Lebesgue measure A(A) is finite. A family of
centered Gaussian random variables (W(A)) A¢B,R, XR) with EW(A)W(B)=MAN B)

is called Gaussian set-indexed white noise. Introduce the function space

C,={w¢CR): su(pn‘;w(x)lexp(-—l}x})< co for some % >0},

where C denotes the set of continuous functions. The initial condition u, is always
assumed to be a random process with trajectories in C,. Finally, introduce the notation
D=0, ] xR and the o=a algebra #; = o{W(A), u,(x): A€, ([0, t]xR), x¢R}, ¢=0.
Fix T>0.
The formal problem (C) gets a precise mathematical meaning by the following defi-
nition.

Definition. A pathwise continuous random field u=(u(t, X)), x)¢p, is called
solution of (C) if it is #, measurable for any t¢(0, T| and satisfies the equation

t

) ut, x)= [G(f- X, ¥) o (y)dy + J[G(t—s- X, V)1 s, y)Mdyds

!

+0. J{ G(t=s, x, AW,y =a(t, x)+0b(t, x)+0.c(t, x).

P a. s for any (¢, x)¢ D;. The mapping G is the heat kernel
G(t, x)=(4nt)='7 exp (—x3/4¢).
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Because of .
[ | GXt, x)dxdt=(T/2m)'?
R

o

the stochastic integral in (C) always exists.

The aim of this paper is to prove an existence and uniqueness theorem for the solu-
tion of (C). It is easy to show. the validity of such a theorem in the case of a global
Lipschitz condition of f. In this situation the successive approximation is the usual tool
for the proof. However, as in the ordinary case this method works also in more general
situations, what is described below.

2. The result. Introduce the Banach space C;_={weC(R):5\(x£ fw(x)|exp(—2 | x )< oo}

X

with thenorm |y | = sup |w(x)|exp(—A|x|). For simplicity the mapping x—exp (—A|x)
x€ER .
is denoted by p. Furthermore, the notation | U, ,: =Osup’ ||U, !l will be used. Finally
=s=
introduce the set CT={u¢C(D;): |U, ;< =}.
Lemma. If u,¢Cy P a. s, then a+oc=z belongs P a. s. to cl.
Proof. See [1].

Fix now ©¢Q such that 2¢CI. Write AU) for the mapping x¢R—f(u(x)). In view of
the above mentioned lemma one can consider (S) as an equation in C,:

14
(%) Ui=Z+ [ Tes AUS,

where the linear operator 7,: C,—C, is given by
(Tew) (x)= [ Gt x—y)w(y)dy-

The main conditions used in the sequel are:
(K) There exists a continuous nondecreasing function k: [0, c2]—[0, =) with &(0)=0

1
and the property J ’-;ui)-ﬁ such that

- IRU)—AV)||sk(U=VI) U VG,
(W) There exists a positive constant M such that
[|FHU) ||sM(1+|U])), UeG.

The last condition prevents a blow-up and ensures F: C;—C;. The main result is the
following assertion.

Theorem. Let uy., ®)€Cy, ©€ Q. Under the conditions (K) and (W) there exists
@ unique solution of the Cauchy problem (C) which can be obtained by successive
approximation.

Remarks. 1. Let 7/ be the fundamental solution (Green's function) of the
Dirichlet problem

Su(t, x)=30 ult, X)+fw(t, X))+ oLt x) >0, x€(0, 1)

©) u(0, x)=uy(x), x€[0, 1,
u(t, 0)=u(t, 1)=0, ¢=0,

for =0, f=0. Investigating (D) instead of (C), it remains to deal with C([0, 1]) instead
of C,. The estimate in (K) can be replaced by |f(«) —f(v)|<k(|u—v]), u, v¢R. Because
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of 0<H(¢, x)=G(t, x), t>0, x¢[0, 1], all estimations which are used in the proof of
the theorem above can be obtained correspondingly in the Dirichlet case. Thus the
theorem also holds for this problem.

2. The estimate in (K) can be derived from

f)—f(v) |sk(lu—v]), u, vER

if k£ is in addition to the other conditions concave else. In fact, choose U, V¢C;, then
from k(0)=0 follows

| fu(x)—f(o(x)) | = (p(x)) 7 - k(p(x) | u(x)—2(x) ),

and hence the desired inequality in (K). Finally, the growth condition (W) follows
easily from | f(u)| =M(1+ |u|), ueR.
3. The uniqueness of a solution always means the pathwise uniqueness in Co.
3. Proofs. Define
V2 =2,

and ,
Vi =V+ 6; T—s AV1)ds

for t=0. Fix now ©¢Q such that z¢CZ. In order to prove the convergence of (V")
the technique of T. Yamada [3] will be used. Introduce the notation

t
[,(V)= of T F(Vyds, veCl, te[o, T].

3.1. Suppose that V ¢CT and that F satisfies (W). Then I(Vyecl.
Proof. It holds

t

L (VX)) SMIT+ [ [ Git—=s,x—y)|s. y)|dyds]

6
<M[T+cy.p(x). ojt ||V, |lds] < ey.p(x)
Hence ||/(V)|/;< =o. It remains to show the continuity of /A(V'). One observes
LX)~ VX | S W) - [ G5, 51 =9)= O, xa=9) | (9 )dyds.
The Holder inequality implies that the last expression is smaller than

M VW)L f [ 1665, 5i=9)—G(s, xa—p)Pdyds". Qu(T, xi, x2),

where  sup  Q)(7, x;, x5)< co on every compact set X in R. By [1], 3.2.1, it is
Xy, Xg€ A
known that the integral in (1) is dominated by |x,—x,|. Analogously, it follows

@ Uy, (VX)L (V)X)| S5 | =ty ™. plx).
Hence /(V) is continuous. This proves 3.1.
3.2. Suppose that u,¢C! and that F satisfies (W). Then V"¢CI. Moreover, it holds

|| Visco.exp(cgt), where the constants ¢, and ¢; do not depend on n.
Proof. This is a consequence of the lemma in Section 2 and
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3.1, The stated estimate can be obtained by iterating backwards the inequality
t

VRl S| VI +MIT +6. [ | Vet ds)

3.3. Suppose u,¢Cy and assume that F satisfies (W). Then | Vi—V?|,<cct, where

the constant cs does not depend on n.
This follows as in 3.1. The next assertion can be easily derived.
34. Let U, V¢ Cg. The conditions (K) implies

| L)~ LW)lises- [ B U=V, ]ds.

Let n be arbitrary but fixed and introduce the following sequences, {=0, i=0, 1,..

l"o(t) = C(,t.
t

M= J k(T; (s))ds,
rit)=|| Vit = Vi |

Furthermore, define 7,={t¢[0, T]: k(cef)<cs for all s¢[0, ¢]}. The continuity of % and
k(0)=0 ensure that the set under the supremum is not empty.
3.5. Under the conditions of the theorem it holds

0<TYO=T;()<T;(O)= ... =T (f)

for any t¢[0,T,)and any j=1, 2,...
Proof. (i) Let j=0. The assertion 3.3 shows

)= Vi— V2 <cst=T,(t), £€[0, T}
(ii) Let j=1. By using 3.4 and (i) it follows

NO= | v -V, = of' k(| Vr—=V0])ds = g‘t k(T5(s)ds < of' R(Ty(s)) ds = Ty(f).
In addition, one observes
() = 6{' k(To(s))ds = of' k(cos)dsscot=Tot), €0, Ty.
(i) Assume that the assertion is shown for j=k—1.Put j=k. For £¢[0, T,] one gets
FO=| Vi =Vilis [ R 0Ms 5 [ KT()s=T 0

Moreover, one observes
0= [ KO AN S T
This ends the proof of 3.5.
3.6. It holds lim | ymin_ym|,=0 for any n=0,1,... and any t¢[0, T,).
Proof. Fmt:—.;.s one concludes that there exists a limit
I'{): = ll_r'n“ ()= ,!.i_'.n..l ymn_ym|, =0,
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for any n=0,1,... and £¢[0, 7y} In addition, it follows
t
I(t)= lim [y, (f) = g R([(s)) ds.

Hence T is continuous on [0, Ty], and I'(0)=0. This yields =0, what proves 3.6.
Let T,=sup{t¢[0, T]: lim | V;"“—-V;"i',:O, n=0, 1,...}. Obviously, 7, = T,.

Now it suffices to show To=T.
3.7. It holds lim || Vm+r—V ":r1=0, n=0,1,...

m—o0

Proof. Let £>0 and choose 8¢ (0, TyA1). Clearly, there exists an m, such that
| Vmtn_Vm | _s<en for all m=m,. On the other side one observes

| Vs v sy <[ L (V)= I s (V) e ar,—s )
Hl ty (V)= L (VT [+ Ir, (V" )= 1 V") [eerr-s 1

The second expression on the r. h. s. of the last inequality is smaller than &/4 by
construction (m=m,). From (2) one gets the norm continuity of /(V) in time. Conse-
quently, for fixed m=m, and sufficiently small 8>0 it follows

|| Vmtn— Vs ¢ (1, — 5. 7, S3/4E.

This proves 3.7.

38. It holds Ty,=T.

Proof. Assume O< T,< T, that means there exists a £>0 such that T,+£¢<T.
(i) Because of 3.7 one can find a sequence of positive real numbers (@M)m=1 such

that am—0 (n=1, 2,...) and such that || V;"+"~V;"|!,2sa‘m"‘. One observes

sup | Vmei—ym|s  sup [[I(VmY—Ip (V) |
Tz-jysrarq»t TZ-;‘.ssT,_,+t 2
I (V[ (VY |+ osup [ (V)= LV S ap+cit'
2 2 7‘25:§T2+r 2

where (2) was used again. Because of 3.1 the constant ¢; does not depend on m.
(ii) Denote T,.k(a!™) by b and choose an integer £¢{0, 1,...} and a real number
n€(, (T—T3) A1) such that

k(a{m+ b 4 ;' )< ¢

holds for any £¢[0, n]. Introduce the sequence of functions ({0 .. defined by

)In:o,l. *
\y‘l")(t): ain) + b(‘n)+ {-:t 18
and
t
VD O= 00+ [ AWy ()M

Now it will be proved that

() WO ZWDB - =T
and
sup || Vmantt_ymetyim (8), €0, m].

T’SJS ’-H
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Let m=1. It holds

t
sup [[Vimri— Vit <bm+ ORI ViEE — Vi (s
T <s<T +t o $ 0 2 2

2= T2
t
<bm + of k(a}"’+c';s‘f")dsgwﬁ),(t).
Furthermore, one observes

! It
VIO =60+ [ KNS b+ et Sa b+ S v, tel0, ul

Now, assuming that (3) and (4) are proved for m=k—1 these inequalities will be shown
now for m==k.

It holds )
+ n N kEntl | atkiiel
T ;.srgg +t [ Vermitt — Vbt < b + of ki V”";a V;'+,2 s
Y

<o, + [ R, ()5 =i,
and from the monotonicity of & follows
VD, (=00, + Of RV, ()0, + oft k(vi7s (s)ds = ViPy()-
(iii) Obviously,
v = lim D, (0
exists for any #¢[0, n]. Moreover, one observes

y™(0): = lim b§;’m=0
m—o0
and

Vo) = | MM, tel0. n)

Since w™ js continuous on [0, n] this yields y®=0, n=1, 2,... Hence
0< lim sup || Vminrl_Vmil < lim w(R,(£)=0.
m-soo

M=y oo rzsssr’“

This contradicts to the definition of 7, Hence one can conclude that 7'=T,. )
In this way it is proved that the sequence (V7),_, converges in Cy uniformly in
te[0, T). Denote this limit by V. )
3.9. The randon field v=((t, x)v¢p_ is a solution of (C).

Proof. Clearly, V, is #,-adapted. The continuity of v follows from the construc-
tion. Finally, one observes

|t %) = (8, 2 — [ [ Glt—s.x—y)f (s, Y)dyds| S| ot )=t 2)]

+ [ [ O=s,x—9) | for(s, y)~fets. )| dydsspll | Vi= V2|
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rop. [ PO =RV 4% o1 Vi Vi + o f MIVI=V, s

The last expression converges to zero uniformly in £¢[0, T].
This proves 3.9.

Proof of the Theorem. It remains to show the uniqueness.
Let u and v be two solutions of (S), then

t
U=V, s6 [ KU, = Vilhds, €0, T

This implies | U,—V,|;=0.
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