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A DIAGONAL PRINCIPLE FOR GENERALIZED SEQUENCES
AND SOME OF ITS APPLICATIONS

YAROSLAV TAGAMLITZKI *

A diagonal principle is proved in the paper. This principle concerns choosing subsequences with
suitable properties from generalized sequences. Some applications of the principle are exposed showing
that it is essentially more general than the Tychonoff Theorem (for example, the existence of convergent
generalized subsequences is proved in some cases when the convergence is not a topological one or
compactness is not necessarily present).

Let {a.} be a generalized sequence, where « ranges over A, and A is a directed
system! We shall say that {a,} is a subsequence of {a,} if ¢y is a monotonically

increasing function whose domain is some directed system and whose range is some cofinal
subset of A2 If D is a non-empty subset of Asuch that o’ ¢ D whenever « ¢D, 0’ € 4,a<c’,
then the generalized sequence {a.}.¢ p is called a tail of the generalized sequence {a.}

A class T of generalized sequences is called stable if each subsequence of any
sequence belonging to I also belongs to X.* Here are some examples of stable classes:
the class of all convergent generalized sequences in a given topological space, the
class of all generalized Cauchy sequences in a given metric space, the class of all
bounded generalized sequences in such a space} the class of all sequnces whose mem-
bersbbelong to a fixed set, the class of all monotonic generalized sequences of real
numbers.

To be given a system {Z);(m of stable classes, it means that a set M is given,
and a stable class I, corresponds to each ¢ in M5 »

* This paper is prepared for publication by Dimiter Skordev on the basis of the annual scientifi¢
reports [1-3] written by the late Professor Tagamlitzki in Bulgarian (the paper begins with the text of
the last of these reports). Since the reports are not in a form intended for publication, and they are not
completely consentient in terminology and notation, some minor changes in their text have been done
and some footnoles have been appended while preparing the present paper (the synopsis at the begin-
ning of the paper is also written by D. Skordev). Let us note that the only known publication of
Tagamlitzki on the subject is the abstract [1].

U A directed system is, by the definition adopted by Tagamlitzki, a non-empty set supplied with
a reflexive and transitive binary relation = on it such that, for every two elements ¢, and ay of the
set, there is an element « of il satisfying the conditions o;<u, @, <a (Tagamlitzki calls such a relation
an order or, more precisely, a partial order on the given set; directed systems are sometimes called by
him directed to the right).

2 A subset A’ of A is called cofinal with A if for each « in A there is an element a’ of A" such
}hat u;;a'. In the original text, functions whose ranges are cofinal subsets of A are called boundlessly
ncreasing.

% This definition and the term “lail” are not to be found in the original text. Instead of saying
“a tail of {a,}", Tagamlitzki said “{a,} considered from some place on".

L1t is convenient to interpret all set-theoretic considerations in this paper in the sense of Neumann-
Bernays-Godel axiomatization of Set Theory. It is obvious that a non-empty stable class of generalized
sequences is always a proper class (i. e. a class which is not a set).

5 In the original text, these examples are given without specifying the sort of the spaces which
contain the members of the considered sequences.

% In Neumann-Bernays-Godel axiomatization of Set Theory, such a system {Z}; ¢ m of classes can
be represented by a class § consisting of ordered pairs with first members in M and satisfying the con-
dition that, for any fixed ¢ in M, the second members of all pairs in S with first member ¢ form a
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202 Y. Tagamlitzki

Diagonal Principle. Let {Z,};¢x be a system of stable classes, and {a.} be a ge-
neralized sequence such that, for each # in M and every subsequence {aq,} of {a.}, a

sub-subsequence {““B,} (depending on ¢ in general) can be chosen which belongs to X,

Then there is a subsequence {a.;} of {a.} (not depending on £) such that, for each ¢

in M, some tail of {a.,} belongs to X, (this tail may, in general, depend on 7).
Proof. Let

(1 b by -

be a well-ordering of M, and let / be the set of ordinal numbers occurring as indices
in (1).5 Let A be the directed system where the index « of {a.} ranges. For each zin
/, we shall define a directed system B,, and a function p,, from B, into B, will be
defined for each x, y in / with x=y, so that the following conditions will be sati-
sfied:

1. Each directed system B, has at least two elements,” and there is a unique
first element O, in it (denoted by O, for short).!

2. For each x, y in / with x=<y, the equality p,,(0)=0 holds.

. BS. Each function p,, is monotonically increasing, and its range is a cofinal subset
of B,.

4. Whenever x, v, 2¢/, x=y=z BEB, and p,.(B)+0, then p.y (py. (B)=pes (B)
In addition, p,.(B)=p for all z in / and all B¢ B,."!

5. For each z in /, the image of B,\{O} under p,. is contained in A,* and the
generalized sequence {a,,, ), where P ranges over B,\{O}, belongs to Z,.

We shall define B, and p,, by induction. For that purpose, we set B,={0}U 4,
where O is some object not belonging to A. Then, for all B,, B, in B,, we adopt that
By=B, in B, iff either B,, B¢ A and B, <P, in A, or B;=0. Of course, we set py; (B)
= for all B in B,.

Now suppose that p¢/, p>1, and B:, p,, are defined for all x, y, zin / withz<p

and x=y<p.

Let C, be the set of all pairs c=(y, B), where y¢/, y<p and P¢B,. A binary
relation = on C, is introduced by the convention - that (y,, B=(ys By) iff y1=y,
and B, = py,,, (By). We shall show that C, considered with the relation = is a directed system.
The reflexivity of the relation = follows from the second clause of Condition 4.'% The
transitivity of the relation is seen as follows. Let

(¥, BD=(ya B)=(ys Ba),

i e Y1=Va Bi=py..(Ba) Y2=Ys ﬁagpy,y.(ﬁa)- Then y,sy; and By<py,y, (Py.ys (Bs))- If
Pyays (Bs)FO, then py,, (Py.5, (Bs)) = Pyuys (Ba), 1. €. By=pPyy.(Bs)- 1T py.y,(Bs)=0 then B,=0

stable class X, of generalized sequences. The words “a set M is given” are added at the preparation of

the paper.
7 This possibility of choosing has to be interpreted in the following “functional” manner: there is
a class F of ordered ftriples such that, for each ¢ in M and every subsequence {a, } of {a,}, there is

exactly one sub-subsequence {ana} satisfying the condition (¢, {aup), {a"B })EF, and this sub-sub-
v 't

sequence belongs (o I,.
8 In the original text, no notation of this set of ordinal numbers is introduced.
? The condition that B_ has at least two elements is not explicitly formulated in the original text.
10 The word “unique” is added at the preparation of Lhe paper.
11 The condition p"(ﬂ). -B is not explicitly formulated in the original text.

12 This condition is also not explicitly formulated in the original text.
13 In the original text, there is no explicit mentioning of the verification of the reflexivity.
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hence (by Condition 2) p,,,.(Bs)=0, and therefore B;=0, i. e. B;=<py.s. (Bs) again. So
(yu B)=(ys By)

in both cases. Thus the transitivity of the relation =< on C, is established. Consider
now arbitrary elements (y,, B,) and (ys By) of C,. We shall construct an element
(3. B) of C, such that
(yu BY=(y: B), (¥ Bo)=(y: B)-

Let, for example, y,<y, By Condition 3, the range of p,,,. is a cofinal subset of
B_v‘, and therefore we can choose an element By of B, such that By<py.;,(Bs). Now
choose B from B,, so that B,<B and Bs<p. Then, by the monotonicity of Py we get
Bi=py.»(B). Hence

(¥ B=(Y2 B).
On the other hand, we have also

(Yo BD=(ya B)
since B,=<B and p,,,,(B)=B.
Now set

Vv (0)=p1y(B)

Wt_lefe o=(y, B)€C,. Then v is a function defined on C,, and the range of vy is con-
tained in B,. The function y is monotonically increasing. Indeed, let

o, =(¥1, B)=03=(ya B2)
be elements of C,. Then y,<y, and B,=p,,y,(Bs). Therefore, if p,,y, (B0 then

P1y, (B =Piy, (Py.y: (Ba)) = Py, (Ba),

i. & y(0,)<vy(0,), On the other hand, if p,,,,(Bs)=0 then B,=0, and, consequently
Py, (B1)=0; hence y(0,)=0, and vy (6,)=vy (o;) again.

Denote by D the set of the elements o=(y, B) of C, such that 0. We shall
show that the image of D under vy is equal to A. Indeed, the values of y (o) for ¢ D
belong to A due to the first part of Condition 5.On the other hand, let o,¢A. Then
o,=(l, a,) is a pair from D, and

V(o) =py(n)=0."

SO {@y(e)}o¢p is a subsequence of {a,}.1® Making use of the assumption of the
theorem, we choose a sub-subsequence {a.,,(.,r)} which belongs to Z,p. Let T be the
(_iirected system where y ranges; then o,¢D for all v in I. Set B,={0}UT, where O
is some object not belonging to I, and adopt that, for all B, By in By, By=P, in B,
iff either B,, By¢T and B,<P, in I, or B;=0. Let o,=(yy, B;) for each y in T. For
all x in / with x<p, we set

Prp (V)= Pry, By

if Y¢I' and x<y, Otherwise, i. e. if y=0 or x>y, we set
px’(y)=0'

4 In the original text, the set D is not considered, and, instead of the last statement, it is proved
that the range of y is a cofinal subset of B, (in fact, coinciding with By).
15 In the original text, {a, ()} is considered instead of {@yo))e ¢ o+ We regard this as somewhat

vague since y (o) ¢ A for some values of ¢ in C,, and therefore we impose lhe restriction o € D.
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Finally, we set
ppp (Y):‘Y
for all v in B,

Now we shall show that Conditions 1, 2, 3, 4, 5 are satisfled. Concerning Con-
ditions 1 and 2, this is obvious. In the case of Condition 3, we have to show that,
for any fixed x in / with x=p, the function p,, is monotonically increasing and its
range is cofinal with B,. If x=p, then this is obvious. Let x<p and B,<B, (B,, B2 € B,)."°
If =0 then p,,(B;)=0 and therefore p,P(Bl)gp,p(B,). Consider now the case of
B,-=0. Then B,==0 too, and we may write: B, =y, ¢, By=7,¢I. If x>y,, then
Pep (1) =0 and therefore p,,(B,)<p.,(B,) again. Now consider the case of x=<y,,. But
means v,<Y,, and this implies &, <0, i.e. (¥, By)=(y.. B.). Consequently, y, <y,
B,=P, and therefore x<y,. Hence

pxp (B1)= pxy.,l (BY )'
pxp (B?) = pxyy, (ﬁh)'

On the other hand, o, =o,, entails also

(2 B =Py, y, (Bro)-
But B,, =0 since oy, =(yy, By) belongs to D. So (2) implies
Pyy Yy, (B+)=+0,

and we have
Pxp (Bl) = pxyh (BY-)S pxyy' (p)'-“yy, (ﬁ’h))‘: pxy,“ (BY:) = pxp (B’)‘

Thus the monotonic increasing of p,, is demonstrated.

Now we shall show that the range of p,, is cofinal with B,. Indeed, let p,¢B,.
If B, O then (x, p,) belongs to D, and therefore (x, B,)<o, for some y in T. Since
o,=(yy» By), we have the inequality B,= p,,y(B,), i. e Bp==pyp(y)- On the other hand
if Bo=0 then By=p,,(0). The cofinality of the range of p,, is thus proved.

We now go to the verification of Condition 4. We have to show that, whenever
X, yel, xsy=p, v€B, and py,(7)F0; then

(3) p.t}’ (pyﬂ (Y)) - px’ (Y)

the second clause of Condition 4 is obviously satisfied).

In case y=p, the equality (3) is obvious, due to the convention p,,(y)=7v. Con-
sider now the case of y<p. From p,,(y)#-0O we conclude that ysy, and therefore
x=YV,. So we get :

Pyp (1)=Pyy, (B Prp (V)= Puy, (B):

and (3) takes the form
Pxy (pyy,' (B))= Py, (B):

1 Strictly speaking, the present use of notations as B, and B, is not completely legitimate after
the notation f, was introduced for all v in I The trouble Is that, for example, 1 or 2 could happen
to belong to I, and then ambiguity could arisejWe, however, regard this notational problem as non-
essential, and therefore we preserved the notations from the original text,
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The last equality is true by the inductive assumption, since

Pyyy (By)=Pys (v)+0.

Thus Condition 4 is verified.
At last, it remains to verify Condition 5, i. e. to show that p;,(v)€A for all
Y€T, and

{ao, (Nl er€X,

For all y¢I', we have
P1p (V)= Piy, (By),
since the condition 1<y, is satisfied. Therefore
P, (N=v (o) €A
for all y in I', and
{amp M} er = {@uen}€ zt,’
So the inductive construction of the sets B, and of the functions p,, is
completed.
After this preliminary work, we are ready to prove the Diagonal Principle. For
that purpose, let C denote the set of all pairs o= (y, B), where y¢/ and B¢B,. We

introduce an order in C in the same way as we did in C, Then C becomes a directed
System. We set

Vi (0) =Py (B)-
Thi.s definition is correct when y>x, and, for any fixed x, the inequality y= x is surely
satisfied if the value of o is sufficiently great. We shall show that, for any fixed x,

the function y, is monotonically increasing and its range is equal to B,!7 Indeed, let
G150y where o,=(y,, B,), 02a=(ya Bs)- Then By=p,,,.(By). If py,1,(B)y==0O then

WV, (61)= Py (B1) < Py, (Pr.y. (Ba)) = Pry. (B2) = W (Og).

On the other hand, if p,,y,(Bs)=0 then B, =0 and v, (6,)=0, i. e. ¥,(0,)=Vv,(0,) again
T For showing that the range of v, is equal to B,, take B,€ B, and set o,=(x, B;)
en

Yy (00) = Pyx (Bo) = BO'

Let us fix some x in /. Then, for all sufficiently great values of o=(y, B), we
have y,(0)+0, i. e. p,,(B)= O, and, consequently,

Y, (0)=P1y (B)=P1x (Pry (B)) = P1x (Vs ()

In the sequel, let D, be the set ot those o in C, for which v, (o) is defined and
Vi (0)==0.18
) Now consider the subsequence {ay,(o)s¢n,- We shall show that, for any fixed x
in [, some tail of this subsequence belongs to .

Indeed, we know that

{ap, ) ¢ 8, {0} € Ze e
By the stability of ¥, , we may assert that

{@py (v(on)o ¢ D, € Xt

!7 Instead of the equality between the range of v, and the set B, only the cofinality of the
fange of y_ with B_is mentioned in the original text.
% No denotation of this set is introduced in the original text.
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But py, (v, (c))=wv,(c) for all ¢ in D,, and therefore
{av.@}een € Xy

The proof of the Diagonal Principle is completed.'

In the applications, the following equivalent form of the Diagonal Principle turns
out to be useful.

Diagonal Principle for Generalized Sequences of Functions. Let {f.} be a ge-
neralized sequence of functions having one and the same domain M. Let {Z,}:¢umbea
system of stable classes, and let, for each fixed ¢ in M and each subsequence {fa; ()}

of the generalized sequence {f.(f)}, a sub-subsequence {f.,BY:(t)} can be chosen which

belongs to £,2° Then there is a subsequence { fu;} of {fu} (not depending on #) such
that, for each ¢ in M, some tail of the generalized sequence { fo;(¢)} belongs to X2

Application 1. Let a set Q be given, and let L be a system of subsets, which
will be called open. The system L is not obliged to be a topology. Let {x.} be a ge-
neralized sequence of elements of Q. Since L is, in general, no topology, it is not
generally true that the existence of an accumulation point of {x.} implies the existence
of a convergent generalized subsequence of {x.}.** However, the following theorem is
valid.

If each subsequence of Sx.,} has some accumulation point, then a convergent ge-
neralized subsequence of {x.} exists.

Proof. Let V belong to L. We set fo(V)=1if x.¢V, and f.(V)=0 if xa ¢V.
let £ be the class of all stationary generalized sequences.?® For each fixed V, the se-
quence of functional values {f.(V)} has the property that each its subsequence has
some sub-subsequence belonging to X (this is guaranteed by the fact that there are
only finitely many distinct values of members of {f.(V)}). By the Diagonal Principle
for Generalized Sequences of Functions, a subsequence {f,;} can be chosen such that,

for each V, some tail of the sequence of functional values {f.,(V)} belongs to X.

Consider now the subsequence {x.} of {x.}. By the assumption of the theorem, this
subsequence has some accumulation point ¢. We shall show that ¢ is a limit of {xq;}
Indeed, let c¢V,y¢€L. Then there are arbitrarily large indices & such that Xaz €V, and,
consequently, fo, (Vo)=1. Since some tail of { fi;(V,)} is stationary, we conclude that,
for all sufficiently large indices 8, we have fo;(Vo)=1, i. €. xq;€ Vo. The proof is com-
pleted.

1 This is the end of the text of [3). After a sentence inserted at the preparation of the paper, a
part of the text of [2] follows.

20 This possibility of choosing has to be interpreled in the the spirit of the seventh footnote (con-
cerning the formulation of the Diagonal Principle).

2l The mutual equivalence of both forms of the Diagonal Principle can be established as follows.
Assuming the first form of this principle, we can obtain the second one by considering the new system
{Z,);¢ m Of stable classes defined by the convention that £, consists of all generalized sequences {fo)of
functions defined on M such that {f,(¢)} €Z,. Assuming the second form of the Diagonal Principle, we
can obtain the first one by considering the generalized sequence { f,} of constant functions on M defi-
ned by the condition that £, (¢)-=a, for all ¢£ in M. The Diagonal Principle for Generalized Sequences
of Functions is formulated without proof in [1], and a direct proof of it is exposed in [2] (this direct
proof will be omitted in the present paper).

22 The delinitions of accumulation point and convergency are the usual ones. An element ¢ of Q
is called an accumulation point of {x,) iff, for each V from L, there are arbitrarily large @ such that
x4 €V. The element ¢ is called a limit of {x,} itf, for each V from L, x €V for all sufficiently large a,
The generalized sequence {x,} is called convergent i{If there is at least one limit of this sequence.

# [, e. the class of the generalized sequences having all their members equal each other.
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Application 2. A subset B of a given topological space will be called precompact?*
if, from each generalized sequence of elemens of B, some convergent subsequence can
be chosen (not necessarily convergent to some element of B). Under this definition,
the following theorem is valid.

Let {f.} be a generalized sequence of functions, having one and the same domain
M, and let, for every fixed ¢ in M, the values of the functions f.(f) belong to some
precompact set (which may depend on ). Then there is a subsequence {fu;} of {fa}
such that, for each ¢, the sequence of functional values { fo;(f)} is convergent.

This theorem is an obvious corollary from the Diagonal Principle for Generalized
Sequences of Functions.?® Note that Tychonoff Theorem is not applicable in the case,
since the closure of a precompact set is not necessarily compact.

Application 3.2 Let { f.} be a generalized sequence of real-valued functions with
a common domain M. Then a subsequence can be chosen from {f,} such that for each
t in M some tail of the corresponding sequence of functional values is monotonic.

Indeed, for applying the Diagonal Principle for Generalized Sequences of Functions,
it is sufficient to show that a monotonic subsequence can be chosen from each gene-
ralized sequence of real numbers. This can be shown as follows. Let ¢ be an accumu-
lation point of the sequence {x.} whose members are real numbers (the cases ¢=+t o
are not excluded). If there are arbitrarily large indices a with x.=c, then a stationary
subsequence can be chosen, and such a subsequence is clearly monotonic. Otherwise,
there are arbitrarily large indices o with x,<c or there are arbitrarily large indices a
with x,>c. Consider the first case. For all a with x.<c, we set B=(a, xa). Let
(a,%a,)= (0, xq,) means that a,<ugand xq,<= Xa,. The set of the pairs B=(a x.) becomes
thus a directed system. For each B=(¢, x.), set gg=a. So we get a subsequence
{xay} which is monotonically increasing. The second case can be considered in a si-
milar way.

Again Tychonoff Theorem is not applicable, since monotonicity is not a topological
convergence.

Application 4. Tychonoff Theorem follows from the Diagonal Principle for Gene-
ralized Sequences of Functions in an obvious way. %7

Application 5. Let S be a metric space, and let p(x, y) be the metric in S. A
generalized sequence {x.} of elements of S is called abhsolutely fundamental if there
is an upper bound of the set of all finite sums of the form

p(xﬂl’ x“:)+p(xﬂ|' xﬂs)+ et +P(X¢,,__p xun)v

where o, <ag=< - - - <,
We shall prove that each generalized Cauchy sequence {x.} of elements of S has
some absolutely fundamental subsequence?® For the proof, we take a convergent series

Elkv with positive members. Consider all pairs B=(a, v), where v is a natural number

® In the original text, another term is used whose literal translation is “completely bounded”

2 The *functional” interpretation of choosing subsequences, which is meant in the formulations of
the Diagonal Principle, creates no problems again. This can be seen by using reduction of generalized
sequences to open filters and applying the Axiom of Choice.

2 As in the case of the previous two applications, the exposition of this application is taken from
[2]. However, an earlier version of its exposition can be found in [1).
¥7 Now we interrupt the exposition of text from [2] and we go to the exposition of an application
taken from Ll] (with a modification connected with a difference between the notions of directed set in
[1] and in the present paper, where the definition from [2] is adopted).

# Obviously, if the generalized sequence {x.} is absolutely fundamental, then x, —x, for every
two indices a,, ay satisfying both inequalities a, say, ay=ay.

™ A generalized sequence {x,} of elements of &'is called a Cauchy sequence iff it satisfies

the Cauchy condition: for each positive real number ¢, the inequality p (x4, x,)<e& holds for all suffi-
clently large indices @, p.
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and the index o is chosen in such a way that
P (Xa Xu)<Av

for all p=a. Lot (v, v,)=(ay v,) means that either o, <ay v,<vy, or a; =0, v,=Vv,3°
Set og=a. Then {x.;} is an absolutely fundamental subsequence of {x.,}. Indeed, let
Bi=PBy=--- =B, and let B;=(ap v;). Then

p(xﬂﬁ‘.v qui+l)=p(x“i' x“i+l)<)"vi
since o4, ~o, Without loss of generality, we may assume that v, <v,<-..<v,.3% Then

Elp(x“ﬂ"' xuni+‘)<i£1 }‘v" f:% M
because all numbers v,, vy, ..., v, are distinct.

From the above result and the Diagonal Principle for Generalized Sequences of
Functions, we get the following theorem.

Let { f.} be a generalized sequence of functions with a common domain M, and
let for every fixed ¢ in M the sequence of functional values {f.(f)} be a Cauchy se-
quence in some metric space (which may depend on £). Then a subsequence {f.,j can

be chosen in such a way that for each fixed ¢ some tail of the sequence {fu;({)} is
absolutely fundamental.®?

The Diagonal Principle can be generalized for sequences of higher order in the
following way. Let A be a set with a partial order (which is supposed to be transitive
and reflexive, but not necessarily antisymmetric). This partially ordered set will be
called a directed system of first order if each denumerable subset of A has an upper
bound and each ordinary monotonically increasing sequence of elements of A has
least upper bound. A generalized sequence of first order {x.} is determined by a
function x, whose argument a« ranges over a directed system of first order. The gene-
ralized sequences, considered until now, will be called sequences of order zero.

A subsequence {xq;} of a sequence of first order {x.} is determined by a mono-
tonically increasing function oy from some directed system of first order B to the do-
main of x,, such that the range of up is cofinal with the domain of x. and the fol-
lowing continuity condition is satisfied: whenever B,, By, Bg ... is a monotonically
increasing ordinary sequence of elements of B and P, is the least upper bound of this
sequence, then ag, is the least upper bound of the sequence ag, ap, Op, .. -

The Diagonal Principle remains valid for sequences of first order. The proof can
be carried out in the same way, but with the following supplement. The sets B,, which
we defined, are directed systems of order zero. We enlarge them to directed systems
of first order by considering the monotonically increasing sequences of their elements.

As an example of a directed system of first order, the set of all denumerable
subsets of a given set can be mentioned (the partial ordering is by inclusion). Another
example is the set of the countable transfinite numbers.

Of course, these investigations can be generalized in an obvious way for sequen-
ces of arbitrary order.

% In (1], where the order (denoted by <) in a directed set is not obliged to be reflexive, it g
adopted that the inequality (¢, v,)< (04 vs) means @, <y, Vi< vy In the present notations, this would
look 80: (ay, v,)=(ag, vy) Means ay=ay v, vy Of course, the relation =, defined in this way, is not
reflexive, and therefore we adopted a slightly more complicated definition,

" Since the inequalities visvys ... sv, hold, and v,=v, . Implies that a ~a,,.

% From here on, the last page of [2] folfows (without changes or remarks).
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