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BEST ONESIDED APPROXIMATION WITH ALGEBRAIC
POLYNOMIALS

S. K. JASSIM

Hristov (1989) used a locally global norm (see also Wickeren (1989)) for bounded functions and
proved that the best onesided approximation (constrained approximation) of a 2x-periodic bounded func-
tion with trigonometric polynomials of degree n in the norm Lp is equivalent to the best approximation

(without constraints) with trigonometric polynomials of degree n.

In this paper we prove the equivalent proposition with respect to algebraic poly-
nomials.

1. Notations. Let d be an integer and 1<p<-co, f be a bounded measurable real
valued function defined on Q, Q=[—1, 1]cR9 R¥is normed by space with elements
X, ¥, h, x=(x;, Xg ..+, X4) and

| x||=max{ x,|: s=1,2, ..., d}
Let further X be a measurable subset of Q. We shall use the following notations

LyX)={f:1fllp=fllbco=(] f(x)Pdx)P <o}, l<psco.

La(X)={f: || flle=]lfllwcn=sup{| f(x)|: x€ X} <oo}.
For u¢[—1, 1], 8>0, v (3, u): =® (u)+5% where ®(u)=\1—u?. A B&-neighbour-
hood of the point w¢[—1, 1] is defined by
UG, 1): ={yel=1, 1]:|a—y|Sv(, 0)
If a=(ay, Og ..., @) is a multi-index, we denote by D®=Df:Dg: ... D the dif-
ferential operator in R? ([8, p. 140]), where Das=0"/dx(s s=1, 2, ..., d.
For x€Q, §>0, a:a,=0, 1, denote

d
Y (3, x)":=' I 1}\4:(8, x.); Y4, x):=H|w(8, X;)
‘Jius- =

and define a 8-neighbourhood of x¢Q by
U@, x:= Il ll}J(S, x,): U, x):=U (3, xy)... U@, x9)

{J:ll'=
We also define
O] £ lls. o=11 s p0r=11 | flloo v @, o1 loxo=11 fo | o Where
2) fo(x)=sup{|f(6): UG, x))
Let N be a fixed natural number and let us set
Z={0,1,..., N=1)%, Z’={0, 1, ..., N},
zy=cos(x—vr/N), v=0,1, ..., N, 2_y=2,==1, zy,=2y=1.
For every j¢Z, j=(ju Ja -- -+ Ja) We denote
Q=2 241]X- -+ X2, 2,41] and for every
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Jj€Z', we denote
Q) =[z;—1, Zp1 X - - X[zj -1 27,41)
By H¢ we denote the set of all algebraic polynomials in R< of degree not greater

than n.
The best approximation of a function f¢L,(Q) with algebraic polynomials from

H? in the metric of the space L, is given by
En(f)pzi"f {;lf_P“pm): PGH:}'
and the best approximation of a function f¢Ls, ,(Q) with polynomials from H? in the
metric (1) is given by
E,(fs. p=int{|f—Plls, p): PeH}.
The best onesided approximation of a function f¢ L. (Q) with polynomials from Hy
in the metrics of the spaces L, or Ls , are respectively given by
E(fp=int{}| P+— P~ |, @: P+ € Ha, P~ (x)<f(x)=Px), x€Q)},
E,(f)s p=int{| P+—P~ s, p@): Pt € Hpy P~(x)<f(x)<PHx), x€Q).
2. Assertions. Let NV be a fixed integer. For v=0, 1, ..., N—1 set °
uy=n—2v+1)n/2N and
.. SintN@u—u) sintN(u+u,)
=0, (W)=sin"gy Gra—ayp siia a2

®, are even positive trigonometric polynomials of degree 4N—2 such that ®,(u)=1
for u¢[n—(v+1)n/N, n—vn/N]. Let u=arccosv, v¢[—1, 1]. Then we have

Fy(v)=F,, ~(v)=®,(arccos v).
In a multivariate case, we define
d
®x ()= T F, v (x).
Lemma 1. [3]. Let j¢ Z, then

3 O, € Hian—z), Oy p=0;

4 O, y(x)=1 for x€Q,
Lemma 2. [3]. Let ¢;=0, j¢Z, then

5 | = | T a” )\,

(5) ‘|”ZaﬁD/,NI‘,(mSC(/(Za/meas /)

Lemma 3. [3]. Let x¢Q, N=[2n/t]+1 and OgtS%. then
(6) QcU(t x) for xeQ

Let A,>A, be two quasinormed spaces with norms ||-||4, and || ||4. Let us de-
fine Peetre K-functional (see e. g.[6] p. 54) for this couple (f€A4, ¢>0) as follows

K(f, ti A A)=inf{]| f—glla+t]|@lla: gEA).
The following lemma asserts that the space Ls , for a fixed § possesses the inter-
polation property. Thus an analogue of Riesz—Thorin theorem (see e. g, [6] p. 10)

holds for the space Ls, , (8-fixed).
Lemma 4. Let f¢L.(Q) and 50, then

K(f ti Ls,p Ls, »)=K(f, t; L, L..)~(£’( £)%(s)Pds)",
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With equivalence constants depending only on d and p, where fs(x)is defined in (2)
and g* denotes the non-increasing rearrangement of the function g (see [6] p. 10).

Proof. The proof of this lemma is as given in [2].

Applying a real interpolation method to the couple (Ls, o, Ls,p) 1=<p,<p <co
and using the reiteration theorem (see [6] p. 66, 144) and lemma 4, we find that an
analogue of the Riesz—Thorin theorem holds for the space Ls , with different p’s.

Next let us give the interpolation property with respect to the space Ls, ,.

Theorem A. Let T be a linear operator from L. to L. (or to L,) such that
for some &

[ Tflsa=My | fllsn (or [ Tfh=M || f s
and
| Tfle<M,|f|l= Then for every \sp<ce, T:Ls, ,— Ls, , (or L,) and
TS s o= MM £, 5 (or || TS|, <M" M| s, ).

Lemma 5. [5]. Let e<1/4, then wyt¢[4e, n—4¢g], we have

(7 [cos t—wy (g, cost), cost+y (g, cost)]c[cos(f+4€), cos(i—4e)].

Lemma 6. Let m and & be numbers such that md<1/4. Then for f¢€L..(Q)
we have

(O flp@=lfls r@=|flls w@=|fll«w,

)} [[f1!ms, » @ =Cqm®@ || f|ls, 5 c)-
Proof. The inequality (8) follows immediately from the definitions of the norms.
The inequality (9) is obvious (as an equality) for p=co. Therefore, in view of the

interpolation property of the space L;, ,, the validity of (9) for every p will follow
from its validity for p=1 (see theorem A with T-identity). So we shall prove

[ fllm, 1 @0=Cam®||f |ls, 1 @)
Now let d=1 and
[—1, 1=/ U LU Js={x:x=cost, te[4md, n—4ms]}
Uf{x:x=cost, 0=t<4md}U{x:x=cost, t¢[x—4md, n]}.
Then
(10) [ fllme, v 1 =+ [+ DI flloow ms, s doe = Ay + Ag + As.
Let x be fixed, x¢/, and let # be chosen so that x=cos?, #¢[0, n]. Hence bY
(7), we obtain
U(ms, x)=[x—vy(md, x), x+vy(md, x)|<=[cos({+4m3), cos ({—4ms))
im
= LJ.. l[cos (t+(2k—1)8/248/2), cos (¢ -+ (2k—1) 8/2—5/2)].
+

Fom

Let &§,=cos(f+(2k—1)8/2) = cos(arccos x + (2k—1)8/2), k=—4m+1, —4m+2
vy 4m.
Let us consider the interval

[cos (£+(2k—1)8/2+48/2), cos(t+(2k—1)8/2—8/2)|=1,.
We have
I,=[—1, 1] where t¢[4md, n—4md), k=0, +1, ..., +4m,
| Iy = cos (¢ +(2k— 1) 8/2—8/2) —cos (£ + (2k— 1) /2+ 5/2)
=2 {sin (¢+(2k—1) 8/2)} sin 8/2.<8 V1= cos’(t 1 (2k—1) 8/2)
S3\(T-Esv(, &
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Thus 7, U (8, &,).

Therefore
m am
(11) U(ms, Xy U L= U UG, &), where
k=—4dm+1 k=—4m+1

Ep=Ey(x)=cos (arccos x+(2k—1) §/2).
From (11), we have

am
A=l e wims. opdxs 2 ] |=we g ondx
Jy k=—4dm+1 J,

Let & be fixed, (k=—4m+1, —4m+2, ..., 4m) and let us denote by y=E&,(x
=& (x)=cos(arccos x+(2k—1) 8/2) =& (#)=cos(t+(2k—1)3/2) and let x=n,(y)=n(y
be the converse function of &(x) such that n,(,(x))=x. So let x=n(y).

Thus

JIf llewe. g omdx=[|fllewe m' (¥)dy,
1 J‘

where Ji—[—1, 1] is the mapping of J; after that. We have
, dg (¢ 1 —sin (¢+ (2k—1) 8
& (%)= :Eu() “dx = (isfint 2
dt |t=arccos x
&' (x)=(sin(¢+(2k—1) 8/2))/sin ¢

=min {(sin (£4+(2k—1) §/2))/sint: 4md<t=n—4m3s}
=(sin ({+(2k—1)8/2))/sin ¢ |t—ams
=(sin(4md + (2k—1) 8/2))/sin (4md)=1/(4m3).

Hence
' (¥)=1/8 (x)=1/(1/4mn)=4m=. Using J;=[—1, 1], we get

‘ "
I flle w@ " (M) dys [/l w @ smydnmdy=4rm| f|s 1 and so
) -

im am
(12 As z  Jlfleveyondes T dnm|fllsa =32nm? ||f s, 1.

=—4m+ 1J, k=—Am+1
Now let us consider

A,-If [ f o (v (ms, 5y dx.
We have

v, =8VI—y3+ 89>8, ye[—1, 1];
v (M8, x)=md /T —x3+(m8)?=m3 sin t+ (md)

=md4md +(md)? =5 (md)?,
for every x such that x=cos¢?, £¢[0, 4m3).
Hence.
U(ms, x)=[x—w(md, x), x+y(md, x)|[—1, 1] [x—5m282, x+5m*[—]1, 1]

5m*—1
.59 2 2 -
< U, xRS x k8480 [—1, 1]
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5m*—1
= U 1[x+k82—v(8' x+kd?), x+k3?+vy (5, x+kNN[—1, 1]
=—0mi4
5m*—1
= U UG, x+k).
k=—5m?+1
Let us replace x+43% by y in every integral. Thus we obtain
1 ’_‘ 1
(13) S e wms, spdx<  Z TS [ww, xsmm dx

Sm?*—1 1

= I  [Iflewe mdys10m?|fs .

k=—5m*+1—1
Similarly we get

(14) -4:!=J”:f”-w(m8- 1)y dx=<10m?| f s, 1.

Thus from (10), (12), (13) and (14), we have
| flims, 1 q—1. 1y=<(327+ 10+ 10) m?|| f |5, 1¢—1. 1n=Cm® || f |[5,1 (1, 1; -
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From {he last inequality and theorem A, we obtain (9) for d=1. Next we get (9)

for @>1 by mathematical induction with respect to d. So

[ fllms. 1 @y=Cam?® || f |5, 1 @).
Thus the proof of the lemma is completed.
Lemma 7. Let P¢HY, then

(15) [ Pls. » @=Cq(1+max (n8, n?))" || Pllyay 1=p=co.

Proof. For p=co this statement is obvious (see (8)). We shall prove it for p=1.

For x¢ Q we denote by £ .¢U (8, x) such that sup{| P(y)|:yeU(3, x)}=|P(&,)]|

Using the representation of the difference P (§,)—P(x) from [7] p. 144 (107) ora

similar representation from [9] and using lemmas 3, 4 from [5] we get
HPls 1 a@=lPlhals [| PE)—P(x)|dx
= l( z [ | D*P (x4 u®) du“dx
F o

5, x)¢

1
z P L S SN
SL.._%:A. U3, x)] U(S{X)“

.| DeP (x01—9 + 4@) | dul9dx
SCq T [1D°P(x)| (80 (x)+8)dx
A

(3@ (@) + 8%)

=Cs X [|(50+8)DPlsm)

a =0,1

=G Z (V[ @DPlh +&1¢| D°Plh )

sc,,I “.‘:' "(max (nd, n*%) || Pl @
.:.'il
= C,((1 +max (28, n%%))*—1)|| P||i @
That is

|| P lls.1 ) S Cq (1 + max (78, n¥8%)) || P |1 ).
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Corollary. For each polynomial P¢H? we have
(16) [Pl @=[Pllimr@=Cal Plowy 1Sp=soco.

Proof. The proof follows immediately from (8) and (15).
Now let R, be the algebraic polynomial of degree n (R,¢ /9 such that

| f=Ry lun, o @=En( . » ).
We define for N=n/4d]
(17) Qi(f, X)=R,(f, x)ilfz‘bi.zv(x)Eif—Rn‘lwm,).

[t is clear that Qf (f, x) are algebraic polynomials of degree not greater than n.
Lemma 8. For any bounded measurable function f in Q, we have

Q. (f, O)=f(x)=Q; (f, x) for any x€Q.
Proof. Let x¢ Q. Then for some j¢Z, x¢Q from (4) and (3), we have
Qr (fix)=R,(f, x)+ A/‘:(‘g,N(x)"llf—Rn?lw @)= Ra (£, )+ f=Rplle @)
ZR,(fs X)+|f()—R. ([, X)|=f(x).
We can prove that Q; (f, x)=f(x) in a similar way. Thus the proof of the lemma
is completed.
3. Main results. We shall find the relationship between the quantities E‘,(f),

and £, (f)in » for f€Lx(Q).
Theorem 1. For every f¢L(Q). We have

(18) E,(f)pSCabn(fim p SCEn(f)p 15p=co.
Proof. Let P}, P, €H? be such that P, (x)<f(x)<P;} (x) for every x¢Q and

E.(f)p=||Pr—Px |, @»
then using (16), we get

En (f)l/n. 4 SEn(f)llm = ” P:—Pu— ”lln. » (ﬂ)SCdH P:—P: ’]p(ﬂ)"‘cdgu(f)r
Now, we shall prove that E

Ey(f),SCuEn(fiim, ».

For this purpose, we shall use the polynomials Q; (f, x) which are given in (17)
and from (5), (6) and (9), we will get

En (f)=l Q:—Qu_ I, @y=2 “/?‘;ZOI'N () || f=Rn |l ) 5",(0)
SC(/“E‘.zmeas Yl f=Ral% @)= C( (zz‘{ 1f=RalZ @ dx)"
SC(/'(ZZ‘[IH/—R. & @ @/ v—1), 2y dx)'P
hC(‘[”f—R, % & @xuv—1), 2 dx)"”

Scd ‘ll"" n ”l/n. = CtEn(f)l/n. r.

Thus the proof of the theorem is completed.

Now let us express the relationship between E,(f), and E,(F), for f¢ L o(Q), Fa=f
a. e, F is a continuous function in Q.
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(17) Qi (f, x)=Ru(f, X)j:/?z‘l’f.zv(x)Lf—f\’n‘!mm,).

It is clear that Qi (f, x) are algebraic polynomials of degree not greater than .
Lemma 8. For any bounded measurable function f in Q, we have

Q, (fs )=f(x)=Q} (f, x) for any x€Q.
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2R, (fs )+ f()—=R,(f, X)|=f(x).
We can prove that Q; (f, x)=f(x) in a similar way. Thus the proof of the lemma

is completed.

3. Main results. We shall find the relationship between the quantities E‘,,( e
and E,,(f)l/n, » for f('LN (Q)
Theorem 1. For every f¢L.(Q). We have

(18) Ey(f)pSCabin(f hin » =Cafn(flp 15ps 0.
Proof. Let P}, P, ¢ H? be such that Py (x)=f(x)sSP} (x) for every x¢Q and

E,(f)=||Pn—Px |, @
then using (16), we get

En(fim p SEx(fum o= || P =P lhn » @SCq| Pa—Pr o @)= CaEn(f)pr
Now, we shall prove that .

Eo(f)p=Caln(f Nm p.

For this purpose, we shall use the polynomials Q; (f, x) which are given in (17)
and from (5), (6) and (9), we will get

E,(f)=/1Qs—Qn l,@=2 i[/fzo/.zv () || f=Rall @) | o)
SC(/’(;zmeaS Q/ “f_Rn 'r: (nl))”’s C( ?;t ‘4] ||I_Rn Hf. mj)dx)”’
=C(z JH/—R. 1% @ @x/v—1), x) d%)'

seza,
hC(‘[Hf—R,.Hf- v @nN—1), 2y d%)"°
SCyllf=Rullun » = CaEn(f . p.

Thus the proof of the theorem is completed.

Now let us express the relationship between E,(f), and E,(F),for f¢ L (Q), F=}
a. e, F is a continuous function in Q.
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Theorem 2. /f f¢L,(Q), Evz’/’—‘Ev( f)p<co, and F is a continuous function
v=1
in Q such that F=f a. e., then

(19) E, (F),<Cg=2p T v¥r-1E,(f),

g'roof. Let Q.€Hy be such that E,(f),=|f—Q:l,,@» v=0, 1.
imnce

»
vzl(Qﬂ“-Q"ﬂ"“):Q"’N_Q" and for F=f a. e, we have | F—Q ,n/x—0, (NV— )

then F(x)—Q, (x)= ifl(Q,m—Qm_.) for every x¢RY.
Then from (18) and (15), we have

E(F)=CiEy(F)in, » = CuE (F—Q)n, » <Cyl F—Q,lum, »

<C, El | Quv—Quv— i, »

=Co ECa@P% | Quuv—Qupr Iy

< C‘VE,W" (Ev (f)p+Epv1 (£),)
<Cyn—2p E,(Q"n)”” (Eaal )+ Epn—1(f)y)

=C24r T var-iE,(f),
v=n

Thus the proof of the theorem is completed.
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