Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica

Bulgariacae mathematicae
publicationes

Cepauka

beiirapcko MareMaTu4ecKo
CIIKCaHue

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on
Serdica Bulgaricae Mathematicae Publicationes
and its new series Serdica Mathematical Journal
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg



MARS — MULTIMEDIA ARCHIVING AND RETRIEVAL SYSTEM
HELMUT EIRUND

~ This paper presents a document model for multimedia documents that is specially developed for
office applications. It satisfies the requirements formulated for conceptual modelling of unformatted
documents, supporting efficient retrieval and flexibility in dynamic application areas. The model and its
implmentation is discussed in five steps of its evolution: (a) formulation of requirements, (b) (informal)
description, (c) algebraic specification of the model, (d) implementation of the MARS system that supports
the model and (e) design of an application in a clinical enviroment. The MARS project is currently
underway at University of Oldenburg. First application is developed for the radiologic department of a
district hospital.

1. Introduction. Documents are the basic information sources in various office
applications, e. g. in management, engineering or clinicar environment. Electronic docu-
ments are no longer restricted to alpha-numerical data or strict formatted forms. In
this paper we refer to documents as information units in elecronic medium, whose
structure is not necessarily formular.It consists of multimedia content units, like alpha-
numeric character sequences (text), graphics, bit-map images or audio annotations.

Examples of documents coming from several application fields are accounting
forms (strong formatted), product offers (free formatted), radiograms (image with en-
closed data fields), reports (complex) or memos (simple). With the variety of structural
information that can be observed, two questions arise:

(i) What structural information is to be described? Documents are normally ma-
nipulated as one unit by the end-user, i. e, the document is a single user ob-
ject. Heterogenous structural information can be observed that describes different
views of the document, supporting different utilizations:

. a document represented in pages, blocks etc. enables the presentation of the

document content on an output-medium

. partitioning of the document content in e.g. chapters, paragraphs, subparagraphs

supports the intellectual comprehension of the document content

- naming and describing semantic components of a document (independent of the

layout and the logic objects) serves for accessing documents by qualifying
those components.

(i How 1is the structural information to be represented ? Splitting document units
into several different relations (i. e. one document represented as a set of model
objects) according to their structural properties, needs a lot of expansive joining
operations to reconstruct the user object each time a document is manipulated
by the user. Furthermore, giving structural information implicitly through a rela-
tional schema tends to be too unflexible to describe all occurences of structural
relations in office documents.

The different utilizations presented above motivate three different views of docu-
ment structure: (@) the layout structure, (b) the synfactic structure and (c) the con-
ceptual structure.

All these views can be represented as trees, whose inner nodes include structural
information and are described by more simple objects, their subnodes. Leaf nodes are associa-
ted to content portions. The layout and logic structure of the muitimedia documents can be

I8 SERDICA Mathematicae bulgaricae publicationes. Vol. 16, 1990, p. 273—284.



274 H. Eirund

efficiently described within the ODA standard (Office Document Architecture). The

Standard is specified in [10].

In this paper a model for the conceptual view is specified. The MARS Project
(Multimedia Archiving and Retrieval System) at the University of Oldenburg follows
this specification. It has been influenced by the modelling approach first presented in
[3] and by the ESPRIT project MULTOS that makes use of conceptual structures for
multimedia document retrieval [8], [4]. i

The syntactic structure of this paper is as follows: The problem of representing
document semantics is discussed in the second chapter and the requirements of a do-
cument model are formulated on that basis. Furthermore, an informal view of the
document model employed in MARS is given in Chapter 3.In Chapter 4 some funda-
mentals of a usual algebraic specification formalism are introduced very briefly (read-
ers familiar with this specification method may skip the chapter). In Chapter 5 {he spe-
cification of the model is given and the semantic specifications of some selected ope-
rations are discussed. The implementation of MARS that follows this specification is
presented in Chapter 6 and Chapter 7 describes a test application currently developed
within a clinical environment. Chapter 8 concludes with a summary.

2. Requirements for a Conceptual Document Model. In many papers require-
ments have been defined for designing office models or data models appropriate for
office applications with different emphasis, e. g. [1] proposes an extension of the ER
model for software engeneering; many suggestions are based on the NF2-model [21],
appropriate complex operations are given in[22]; semantic information of office docu-
ments is discussed in [20]; In [13] the requirements of office archiving systems and a
classification of models have been given; involving knowledge bases for document rep-
resentation has been proposed in many papers, e. g. in [9], partially implemented in [2]).

Concepts for document modelling and manipulation are influenced by at least three
aspects:

. gatabase theory with practicable relational calculus,

- information retrieval with its homogenous view of the data object “document” and

appropriate access methods and

- object oriented modelling with the issue of representing complex user objects

through model objects in a suitable way.

The MARS document model should meet the following requirements:

(a) to provide an abstract view of document semantics: to describe document seman-
tics by naming conceptual units i.e. application relevant units, and specifying
hierarchical relations between them, like aggregation or specialization.

(b) to associate values(content portions) to conceptual units and permits fact retrie-
val by qualifying documents through document values.

(c) to support a systematic and consistent process of modelling document semantics:
typical semantic properties of documents are generalized to document types that
serve as templates and support query formulation as well as evaluation.

(d) to allow flexibility of describing document semantics and types.

3. Informal Discussion of the MARS Model. Trees structures are well suited for
representing document semantic structures. In the MARS model document conceptual
Structures are defined as trees. All those components of a document that are relevant
to further processing are identified and named [11).

A conceptual structure is composed of conceptual components (also called con-
cepts). It contains basic conceptual components as leaf nodes, and complex concep-
tual components constructed by subcomponents. With the concept identifiers a “natu-
ral” understanding can be associated (e. g. the concept named “offer* identifies the
description of an offer in a business document). Thus we get an abstract view of the
semantic units of the document. The association of content portions as values to con-
cepts, as weli as the valuation of properties like price of a product or medical exami-
nation results on a patient card can be expressed.



Multimedia Archiving and Retrieval System 275

The construction mechanism may be either aggregate so to describe a concept
by those concepts participating in its definition, or specialize in order to describe a
concept as a whole. The next figure vasualizes' a document conceptual structure that
can be observed in a clinical environment.

/S 2
7SkO” // 2.11.88
Raldloll‘)g»c filing
card of 7,

-Mr /J(/)!m Smith
S,

fhévéple: / / /,
“torax tumor examination
resulting in abnormalities

/

in torax with tumors... med result ||

%
E ’ml ,', m'
0 //i'/%?

Fig. 1. A document with its conceptual structure

//’}%ﬁ%f_’l&

7,

- l med-resuit
o~ T
a i~/ S S A

v S AN/ /‘,,’/

Classes of documents with a similar structure can be described by document
types. A type conceptual structure is a generalization of the document conceptual
structures associated to it. Thus, basic concepts in type conceptual structures are not
further described by associated values but have value domain specifications. Further-
more, a variety of concepts specializing one concept can be formulated (ckoice-spe-
cialization). Document conceptual structures are instances of the appropriate types.
This enables a content modelling process of documents with similar semantics. Figure
2 visualizes? a possible type conceptual structure with the document structure of fig.
1 as one of its instances.

Document conceptual structures of one type are not required to be identical, be-
cause not all the semantic properties can be foreseen at the type definition time.
This is called weak typing opposed to strong typing. A later refinement of types aiso
can produce new types (subtypes). According to this refinement relation that specifies
inheritance of type conceptual structures to subtypes the set of types can be organi-
zed in a directed acyclic graph. Both, weak typing and multiple inheritance provide
the flexibility demanded above.

1 The graphic representations are: — aggregate constructor (black square, specialization) black
circle, value (arrow to value box, value domain) associated box.
? The graphic representation for choice-specialization is an unfilled circle.



276 H. Eirund

These data structures together with the set of operations defined for creating,
modifying and selecting them, form the basis of the MARS document model.

4. Some Basic Statements on the Specification of the MARS Model. There are
several specification techniques for abstract data types, e. g. specification by intuition,
example or implementation. These are all straight forward, but often things become
complicated when investigating some more sophisticated questions.

We present an abstract specification that should describe how document seman-
tics is represented and manipulated. In [14], [15] and others the algebraic specification
formalism is recommended for describing data structures and the appropriate opera-
tions. It helps to present their syntax and semantics, supports the verification of the
model properties and the consistent model specification. Furthermore, properties diffi-
cult to be expressed by a data model (e. g. “well defined” conceptual structure,
“value” of a concept) can be shifted into the specification of the appropriate opera-
tions (modification and value operations, resp.).

Trying to follow the enhancements proposed in the algorithmic specification for-
malism by [17], we specify the semantics of most of the MARS operations through
recursive functions. Thus the existence of an implementation and its freedom of con-
tradictions can be simply derived.

Next we introduce two basic definitions and a small example to make the forma-
lism employed in Chapter 4 more understandable. s

An algebraic specification consists of two parts: a syntactic specification and the
description of the semantics of the syntactic elements. The syntactic specification is
given by a signature of the formal language or the abstract data type. Similar to
the interface specification the signature determines the descriptors of the relevant data
domains and the operator symbols, and defines the type of the operators. The basic
elements of the formalism used hereafter are presented. A more exact background is
given in [16].

Elements of algebraic specification:

Definition. A Signature is a pair (S, L), where S is a set of sorts,  is a
family of sets of operator symbols. Each element O, of ¥ is linked to a sequence
(S =« + sSusin)s S €S. An operator op is syntacticly defined by its symbol op,€O,
and the association of the sequence of argument sorts (Si, ... Sn,) and its target

sort S, .

The second part of the algebraic specification determines the semantic properties.
For each sort a carrier set is defined, i. e. the set of its values, and for each opera-
tor symbol a mapping from the carrier sets of the argument sorts to the carrier set of the
target domain is given. This part is called a E-algebra.

Definition: Let (S, ¥) be a signature, (C°) denotes the carrier set of s and
C=(C*)s¢s isa family of sets. Let C*=df { } and C* =dfC® X C*, with w¢S* s¢S. For
each op, in each O,¢X a mapping op,C is associated with C(si, ... ,s,,k)—-C’,,,,l,,.

The pair (C, {op,C|op,€S}) defines a Z-algebra.

Some extensions should be presented informally. We introduce variables by giving
the corresponding term-algebra where the ferms are: each element of a carrier
set, each operator expression and each variable. A set of equations implies equivalen-
ce classes of different syntactic elements with the same semantics. Restricting ope-
rator specification to those classes abbreviates the specification process.

Example: -algebraic specification of the abstract data type "Set“-

The signature (S, X) is given by:

S= {Set, Int, Bool}

with constructors® for Set: emptyset: — Set, and insert: Set, Int — Set

8 Constructors can be seen as unevaluable operators. The gemantics of a constructor term is just
the character sequence built according its definition.



Multimedia Archiving and Retrieval System 277

= {InSet: Int, Set —Bool}, tests the membership of an Int-element in a set
The X-aigebra comes with:

CBool =g4; {true, false}
Cint =qf N
CSet =gt {“the set of words defined by constructors™s}

InSet (i, s) =altrue, if gel,...,en€ Clo4s,;,¢CSt with
s=insert (..(insert (spy1,1), €)..),el)

| false, else
Equations:
insert (insert (s, j), i)=insert (insert (s,i)j), with i, j¢ N, s¢Set
insert (insert (s, i), i)=insert (s, i), with i¢N, s¢Set

An algorithmic notation of the example above would change the definition of the
mapping given for the operator by a recursive function, e. g.

InSet (i,s) =df | true, if s=insert (s'i)
false, if s=emptyset
InSet (i, s’), if s=insert (s, 1), j==i
5. Data Structures and Operators of the MARS Model. This section outlines the
signature and the X-Algebra of the document model employed by MARS, as intro-
duced informally in the third chapter. First we present the set of sorts together with
the description of their carrier sets as comments (in brackets “(*.. *)”). Next for the
sake of brevity we will identify a sort with the respective carrier set.
S={ CC, (* descriptors of the conceptual components, defined as concepts ¥)
Dom, (* set of sort descriptors of the employed value domains:
in MARS: (atomic:) “Num”, “String”, (non-atomic:) “Text” %)
Num, Text, String (* value domains, also denoted by Domj,
the carrier set of Text is a set of arbitrary sequences of String-

elements » ¥
Bool,  (*={true, false} *)
CS (* conceptual structures (e. g. document-, type-, sub-structure *)

Elements of the sort CS are tree-like structures with concepts as nodes and con-
structors that define all the relationships between the nodes. The latter describe the
structural properties of the document semantics and will be given in the following list:

CS=df (CC; (* single node structure *)

agg (CCCS+9) (* concept with its aggregates and their substructures *)
spec (CC, CS+)  (* concept with a set of its specialisations and their sub-
structures %
c-spec (CC(CS+)+)(* concept with possible variants (choice-) specializations, *)
applicable only in type structures, to make them more)
general <
conc (CS+) (* combination of different kinds of structure with same)
root-thus it is used for technical reason and does not
express any semantics of the document content *)
iterate (CC, Num) (* identical iteration of one concept with its substructures,
applicable only in document structures *
domain (CC, Dom) (* concept with associated value domain — establishes an
attribute ¥
value (CC.Dom,Dom;) (* concept with linked value from given domain *

)

¢ The target sort is prefixed with a *— ",
5 The syntactic definition of a sorl with constructors implies a context free &rammar; here: G=
(Set, ‘emplyset. insert, N), {Set), {Set::=emptyset | insert (Set, N)}) and L(G)=CSet,
The *S-+" names a sort S that specifies all non-empty sequences of elements of sort S — to
avoid introduction of new sort descriptors.



278 H. Eirund

The constructive definition of CS allows the definition of different structures
although describing same properties. The following equations E help to minimize the

redundancy’.
E=df (conc (Tree, Node) =Tree, if Tree=® (Node, Arg)™)
conc (Tree,, conc (Tree,, Tree;) =conc (Tree,, Tree, Trees)
® (Node, ¢) =Node, if ®¢ {agg, spec, c-spec}
@ (Node, (Sub,,..,Sub,™)) =® (Node, (Suby™", Sub,™,..,Sub,™)), if

@ as above

conc (®(Node, Sub™), ®(Node, Sub™~))=®(Node, (Sub~@PSub™™)), if ®
as above

).

As we distinguish document conceptual structures from the generalized concep-
tual structures, a rule which is neither expressed in the data structure specification
nor hidden in the operation specifications should be given informally:
Type-Instance-Rule :

(a) Type conceptual structures do not contain “iterate” or “value” constructors

(b) Document conceptual structures (as instantiations of a type structure) have:

-a “value” constructor for each “domain” constructor in the type (a vaiue is
liked to each attribute-concept)
-no choice of specialization (“c-spec” constructor)

The notation of a (simplified) conceptual structure is given in the following exam-
ple. It refers to the structures given in fig. 1 and fig. 2, respectively.
Example: — referring to figures 1 and 2 above —

(a) type conceptual structure (— fig. 2)

Let cs¢CSS be defined:

cs=agg (document, (domain (date, Num), conc (spec (content, text), agg (content,

(domain, (name, String), c-spec (med-result, (radiological, nuclear)))))))

(b) document conceptual structure, instance of type in (— fig. 1)

Let ¢s¢CCSS be defined:

cs=agg (document, (value (date, Num, 881102), conc (spec (content, text), agg
(content, (value (name, String, Smith), spec (med-result, (value (radiological, Text, (off-
set, length))))))))

The Syntactic Specification of the Operators X. The set I of sequences of argu-
ment and target sorts with the appropriate operator symbols are presentedin the following
list. Again an informal description of the operator function is given in comments:

={(CS, CC->CS) view (*provides a superstructure with a given leaf node *)

project (*provides a substructure for a given root node *)

(CS, CC->Bool) is-concept (*existence of a concept in a structure  *)

(CS-> CC) root-concept (*the root concept of a (sub-)structure *

(CS, CS ->Bool) is-substruc (*existence of a substructure in a structure *

is-ref  (*compares two structures for refinement *)

(CS, CS, CS->CS) subst (*substitutes substructure in given structure *

§ ->CS) create (*initializes a new structure *)

CC, CS, CS -> CS) ref (*refines a given structure in a specified concept

by a new substructure (“refinement-step”) *)

(CS+, CC-> Dom*) val (*provides all the values related to a concept *)
(Domy, Dom; ->Bool) <, >, =, +, contains® (*relations on values® *)

7 Notations : + Arg-denotes the rest of an argument list

+ (O denotes concatenation of sequences.
8 «L contains 8” denotes inclusion of s ¢ String In t € Text.
® Further relations depend on the employed value domains (e. g. image-qualifying relations, etc.)



Multimedia Archiving and Retrieval System 279

(CS, CC, Dom;—Bool) select | (*compares according to p € {<, >, =, =, contains}
the values of a concept with a given value *)
(CS +—CS) merge (*combines a refined structure from given structures®)

Semantics of the Operators. In this section the semantics of the operators defined
within the model is described. As structure manipulation is only supported by these
sets of operations, much of the data model semantics is implied by the operations.

The operators can be grouped into three groups: we distinguish operators for
- creating (i. e. initializing) and modifying structures (create, ref, merge),

- restricting structures to subparts (project, view, value) and
- comparing values and structures (is-ref, select and the value relations: {<, >, =,
=+, contains}).

Furthermore, some basic operators are used so as to define the operators above
(is-concept, is-substructure, root-concept, substitute). The operations are mostly defined
recursively. We do not want to discuss all of them in this paper, but we will give
some of the most essential ones:

The “create” and “ref” Operators: In the specification of the sort CS all pos-
sible structures are defined. Although, not all of these elements describe well de-
fined conceptual structures of documents or types, These consistency constraints are
hidden in the “ref” operator. Its definition describes all cases of allowed refinement
steps leading again to a well defined structure. All well defined structures have the
root concept in common (named: root?), initialized by the operator “create”:
create ()= (root?)

Some of the constraints given in the “ref’-operator, are presented below:'°
ref (RefNode, Ref Step, Tree) =g

(1) | Tree [RefNode/Ref Step],
if project (RefNode, Tree)=RefNode
(2) | Tree [domain (RefNode, dom) / value(RefNode, dom, v)],
if project (ReiNode, Tree)=domain (RefNode, dom)
and RefStep =value (RefNode, dom, v) and v ¢ Cyo,n
(3) | Tree [® (RefNode, (Sub,,.., Sub"))/ ®(RefNode, (Sub,,..,Sub,)D
RefTrees—)],
if project (RefNode, Tree)=®(RefNode, (Sub,, . .Sub,)) and
RefStep = ®(RefNode, RefTrees—), fiir ®¢ {agg, spez, c-spez}
(4) | Tree [c-spec (RefNode,((Sub, ,..Sub, ).., (Subm.., Subm,))) /
conc (c-spec (RefNode, ((Suby,,.., Suby,), .., (Subm , . ., Subm,))
spec (RefNode, (Sub,) )]
if project (RefNode, Tree)
=c-spec (RefNode, (Sub,,..,Sub,)..,(Subm .., Subnm)
and RefStep=spec (RefNode, (Sub,))"*
(5) | Tree [®, (RefNode, Sub—) )/
conc (@, (RefNode, Sub—), ®, (RefNode, Sub—) )],
if project (RefNode, Tree)=®1 (RefNode, Sub—)
and RefStep=®, (RefNode, Sub—)
with ®,, ®, not unifyable (e. g. ®,=agg, ®,=c-spec)
(6) | Tree [® (RefNode, Sub—)/iterate (® (RefNode, Sub—), Num)],
if RefStep =iterate (RefNode, Num) and ®¢ {value, iterate}
(6) | undefined, else.

10 Notations : - Arg— denotes the rest of an argument list
- @ denotes concatenation of sequences
11 Without restrictiond according to equations.



280 H. Eirund

Table 1

¢ RefStep

Tree CcC dom value agg spec c-spec

CC n s 1 s 1 s | 1 s 1 s 1
dom n c s 2 c c c s 6
value n — —_ — — - —
agg n c — s 3 ¢ c S

6 spec n c - c s 3 ¢

s 6 c-spec n c - [ s 4
s 3 s 6

iterate — — — — — — -

The following table summarizes the substitution rules given in the “ref’-specifica-
tion. The labels are “n” (no substitution), “si” (substitution according to rule i), “c”
(concatenation with “conc” constructor, same as application of rule 5) and “-” (not
defined).

The val, select and is-ref Operators:
val (Tree, Node)= df
| {dom, v) }, if project (Tree, Node)=value (Node, dom, v)
| U(SubTree ¢ Sub) val (SubTree, root -concept (Sub Tree))
if Sub={SubTree| is-substruc (SubTree, project (Tree
Node) and SubTreeTree}
[ {} else

select (Tree, Node, c)=df
| true, if (domiText
and 3(v, dom,) € val (Tree, Node): vp ¢, and p¢
{<.>=}
or —3(v, dom) € val (Tree, Node): v,=c, and

“«_1

or (3(v, dom,) € val (Tree, Node): v,=c, and dom, =
Text
or  3(v, Text ¢ val (Tree, Node): v, p ¢) and
p = “contains”
| false, else.

As stated before, document structures are refinements of appropriate types (and
associated to those types), and the type catalogue itself defines a directed acyclic
graph according to the refinement relation. Refinements are defined by applying the
“ref” operator-thus, structures can be equivalently specified by an appropriate se-
quence of “ref”-applications. The “is-ref” operator uses this notation for specifying
two structures to be in refinement relation:
is-ref (Tree Spec, Tree)=df

| true, if3 {N,,..N.}, {RefStep,,..,RefStep,} with n=1 and
rec Spec=ref (N, RefStep,) ref (N, RefStep,)
(Tree)
| false, else.



Multimedia Archiving and Retrieval System 281

Query-Language. The query language can be defined by the operations above.
The features of the query language are: qualifying documents by
(a) typical properties, given through their type association, (fype clause) and/or,

(b) the existence of a concept, (existence clause) and/or,
(c) the value of a concept (value clause)'.

The expressions of (a) are defined by the “is-ref” operator, (b) is defined with
the <“is-concept” operator and (c) is mapped to appropriate applications of the “select,”
operator. The evaluation of the operation expression is to be interpreted against a
state of the MARS document archive ./ enhanced by the state of the currently defi-
ned types (catalogue) C. We define such an extended state s s, as follows:

Definition: An extended states ¢ of a MARS archive is atriple (AT, L) with:
- A is a set of pairs (ldi, cs), with ldi ¢ ID 4, a countable set of internal

’ogic document identifiers and cs is a document conceptual structure and 1di is
unique in A.
- T is a set of pairs (Iti, cst), withlti¢ ID¢, a countable set of internal logic type
identifiers and cs is a type conceptual structure and Iti is unique in T.
In a consistent state the two functions L and H are totally defined:
- L is a function linking each pair (Idi, cs)¢ A to a best fitting type (lti, cskT:
=g { ((1di, cs}, (Iti, cs¢) | (Idi, cs)€ A, (i, csy)¢ T, and is-ref (cs, csy)
and — (3 (Iti’, cso) € T: ((Idi, cs), (1ti’, csy)) € L
and is-ref (cs, cs/) and is-ref (csi, (cst)) }
- H is a function linking each pair (Iti,cs)¢ Cto its set of supertypes (thus represen-
ting the Hasse-Diagramm??® of the type Catalogue):
=q; { ((Iti, cs), (Iti", cs")) | (Iti, cs), (Iti’", cs”)é T and is-ref (cs, cs’)
and — ( 3 (ti”, cs”)€e T: ((ti, cs), (Iti”, cs”)) € H
and is-ref (cs, cs”’) and is-ref (cs”, cs’)) }.
The evaluation of the three kinds of clause-expressions is defined in the following
way: (a) For each type identifier Itii¢ ID¢ of the type clause the set

{ (Idig, cs) | Idia€ ID_, and is-ref (cs. csy)}

is evaluated, if (Iti, cs() € T, {} otherwise. Thus we get the transitive closure accor-
ding to the refinement relation. Sets for different type identifiers in the clause are
united.

(b) For each concept ¢ given in the existence clause the set
{ (Idig, cs) | Idis€ ID, and is-concept (cs, ¢)}
is evaluated.
() For each comparison (c p val) given in the value clause the set
{(Idig, cs) | Idig € ID, and select, (cs, c, val)}
is evaluated.
The boolean relations AND and OR in (b) and (c) are mapped to union and inter-
section respectively.

An example query that will qualify the document given in fig. 1, may be: FIND
DtOCUMENTS [OF TYPE xxx] WHERE date>880101'* AND med-result CONTAINS
“tumors”.
~ With the specifications of the operators and the state given above, complex func-
tions like query evaluation and type catalogue updating can be developed. We distin-
guish two classes of functions:

12 A further qualification of documents is supported in MARS by restricting the search scope to
documents of defined collections (collection clause) — they may be created by former query-results. As
It is not a special document qualification coming from the model it is not discussed here.

i l‘l. lTht graph-representation of an ordered set (here: is-ref order on the type structures) without
ransitivity.
14 Date in a normalized representation.




282 H. Eirund

functions with read only access (query evaluation, type calalog browsing, etc.)
functions updating the state of the archive (type insertion and removal, docu-
ment filing etc.).

For the first class optimized algorithms can be verified. E. g. for the evaluation
of the type clause first evaluating the set 6f all types in the transitive closure of the
given type by consulting the H-relation and then inquiring the L-relation will pro-
pably provide the specified documents more efficiently. For updating functions consis-
tency preserving transactions with respect to L- and H-relation can be formulated.

5. MARS Software Architecture. In fig. 3 we present the layered software archi-
tecture of MARS (the full documentation is included in [6]). It is implemented in
Modula2 on Sun3 computer systems running the UNIX* operating system. The Sto-
rage Layer includes basic file system facilities. The HOST software interface [5] pro-
vide an operating system independent library to access basic system functions. For
secondary storage sequential files are used and for efficient multikey access the grid-
file system [19] is employed.

The Data-Handler Layer encapsulates all fundamental data types. The module
CSDHd for handling conceptual structures follows the specification given in Chapter
4. The specification of the conceptual components by an associated value domain in
a type conceptual structure allows their being treated as attributes providing access
through value qualification. To speed up query evaluation with respect to those attri-
butes some special access structures can be defined, e. g. text-signatures given in [12]
for the components with Text-value and the index- or hash access for the compo-
nents with atomic domains (we employ the gridfile system for them). The SpAccHd
(Special Access Handler) keeps track of those definitions, the Signfd and AfrAccHd
support the respective filing and retrieval facilities. Each object, i. e. type or docu-
ment with its conceptual structure, is uniquely referenced by an internal logic object
indentifier (LOI). To handle long lists of LOIs, e. g. in the query evaluation process,
the ListHd provides efficient setoperations on dynamic hierarchic bitvector-trees for ma-
nipulating those lists.

Complex functions operating on the state of the archive defined on top of the
basic operations of the model (like query evaluation or type catalogue updating), are
partitioned in tools of the Tool Layer. Here we placed the functions mentioned at
the end of Chapter 4. These tools can be combined easily to define approporiate user
applications. A machine independent wuser interface manager toolkit is realized in the
module “Fantasy” [13] that permits text or graphic user interface 1/O. The type mana-
gement tool includes facilities for browsing and updating the type catalogue with
preservation of consistency with respect to the refinement relation defined earlier.
Furthermore the associaton of documents to types is handled here (DocSetHd). The
document access manager controls the insertion and deletion of document conceptual
structures and the wupdating of possibly defined special access “structures. The
query manager tool interpretes the query that may be a logic combination of type-,
existence-, value- and collection clause and maps the different retrieval requests to
the appropriate handlers (SignHd, AtrAccHd, ListHd, DocSetHd). Arbitrary document
sets coming e. g. from queries can be stored and combined with functions from the
collection manager tool. The CSManager provide functions for defining conceptual
structures in a consistent way (according to the “ref” operator introduced in
Chapter 4).

The tools support the development of functions for the user interface. These
functions are situated in the Application Layer. They can be grouped as follows:

1. Type-Administrator — Type Catalogue Init, Type Insert, Type Remove, Type
Modif
2. Type yérowsing — Find Supertype, Find Subtype, Get Type Definition

* UNIX is a trademark of AT&T Bell Laboratories.



Multimedia Archiving and Retrieval System 283

Document Handling — Document Insert, Document Remove, Get Document
Collection Handling — Collection Init, Insert in Collection, Remove from Collection
Query — Find Document, qualified by Type, Concept, Concept Value, Collection
Access Optimizing — Add Special Access, Remove Special Access.
To access and present documents on an appropriate output medium functions from
the Picture Archiving and Communication System (PACS) (see Chapter 7) are called
from different layers through an interface with the industrial standard ACR-NEMA.
The SPI standard enhancement, supported in this PACS specifies the client-server
communication protocol.

&(;‘ - 7 (\ 20 f Application
’ r—J——— . 11 // Level

1S ! i ] g7

ot IR 4 - M WAV,

ouAw

b "/ /s Tape Manager/// csp”/ /‘ e A Ct:‘)cg—" /// \:_cgﬂ:.,',’/ User IF’
%\ / S S S S S M tion”/ v snager] Tool Layer
RSN A
o ’\ Type Cat4Type Catl DocSet Covns»swncq‘ S/
Browser 1 Upcate ' Handler | Normalize 117~/

NN\ N N Data
List Hdx SpAcc Hdr\ \ AtrAcc Hd\ Sign Hd Handling
N\ ,. Layer

-
N N

S -
Tupe! - Hd\J [\.CSD HN
< \ Xl\ AN

N e N
T T
fHE T
{1t NIRRT

| i Storage
LT """'Hl{::!'la’; Layer
1111

P

T ‘{‘Hr‘m.‘lc T
| IRRRER | | {OL-File System | |
IR NEE RN RNERE RN Ll

Fig. 3. Software layers in the MARS architecture

7. Test Application in a Clinical Environment. A first application of MARS that
supports the manipulation of conceptual structures is developed for the radiologic
department of the district hospital in Oldenburg (SKO: Stidtische Kliniken Oldenburg).
To provide basic storage and retrieval functions for a large amount of data (estima-
tion: 20 GByte yearly for approximately 60.000 documents of different types) a Picture
Archiving and Communication System (PACS), specially developed for clinical appli-
cations (see appropriate papers in [7]). is to be installed's. While the PACS provides
the storage and presentation of the original documents, MARS manages the type and
document conceptual structures and provide their manipulation and access.

Although the rather static “document type world” in the radiologic department of
SKO is not the typical application environment of the MARS system that aims to
support frequently restructuring and enhancement of the type catalogue, it gives an
organizational advantage: as the flow of activities in the organization relies on the
document and formular structures, the activities should not be changed, as those exis-
ting structures can be directly mapped onto appropriate type structures defined in the
MARS model. This simplifies the snapshot.

8. Conclusion. Multimedia documents can be seen by a layout view, a syntactic
view or a semantic view. This paper focuses on the last one, defining abstract repre-
sentations of documents via tree like conceptual structures. Typical properties of classes
of document structures can be generalized into type conceptual structures. With those
types and their associations to documents complex retrieval functions can be supported.
In the MARS project currently performed at the University of Oldenburg appropriate
facilities are implemented. This paper concentrates on the specification of the

15 Currently the PACS Services are simulated.



284 H. Eirund

model, i. e. both data structures and operations and gives an overview of its imple-
mentation.

This paper concentrates on the specification of the model, i. e. both data struc-
tures and operations. It outlines the approach of an algebraic specification, suitable
for describing abstract data types. While the syntactic specification with an informal
semantic description is given in detail, presentation of the semantics of the operators
is reduced to essential definitions. With the basic operators complex functions (e. g.
query evaluation, type update, etc.) that operate on the state of the archive are
described.

In a clinical environment an application has been modelled. Ten document types
represent a snapshot of the “document world” analysed in a radiologic department.
Furth;ll'?éesting with the first implemented prototype will allow quantitative analysis
of M .

REFERENCES

1. K. Abramovicz, K, R. Dittrich, W. Gotthard, R. Laengle, P. C. Lockemann,
T. Raupp, S. Rehm, T.Wenner. Datenbankunerstyetzung fiir Software Produktionsumge-
bungen. IFB 136, Berlin, 1987.
2. H-J. Appelrath, M. Ester, H Jasper, A, Ultsch. KOFIS: ein Expertensystem zur inte-
grierten Dokumenten- und Wissensverwaltung. Proc- Expertensysteme '87.
3. F.Barbic, F. Rabitti. The Type Concept in Office Documenl Retrieval. Proc. 11th Conference
on Very Large Data Bases. Stockholm, 1985.
.E. Bertino, A, Converti, H Eirund, K. Kreplin, F. Rabitti, P. Savino, C. Tha-
nos. MéJLTOS —- A Filing Server for Multimedia Documents. Proc. Euroinfo. Athens,
May 1988.
. Interner Bericht Fachbereich Informatik. HOST : An Abstract Machine for Modula 2 Programs. Uni-
versitit Oldenburg, April 1988.
. Interner Bericht Fachbereich Informatik. Endbericht der Projektgruppe TECDOS/MARS. Universitit
Oldenburg. ! "drz 1989.
H. U. Lemke, M. L. Rhodes, C. C. Jaffee, R. Felix. Computer Assisted Radiology. Proc.
CAR &7 Berlin, 1987.
.P. Constantopoulos. H. Eirund, K. Kreplin, F. Rabitti, CThanos et al. Office
Document Retrieval in MULTOS. Proc. 3rd ESPRIT Technical Week, 1986.
. W. C. Croft. User-specific Domain Knowledge for Document Retrieval. Proc. ACM Conf. on
Research and Development in Information Retrieval, ABM, Pisa, 1989.
10. Europesaen Computer Manufacturers Association. Office Document Architechture ODA-ECMA-101.
pt. 1985.
11. H. Eirund. Knowledge Based Document Classification Supporting Content Based Retrieval and Mail
Distribution. Proc. IFIP TC6|TC8 Symposium — Sofia, May 1988.
12. C. Faloutsos. Access Methods for Text. ACM Computing Surveys. Vol. 17/1, March 1985.
13. F. Forsterling. Database Requirements in the Office. Preprint of Xth Int. Seminar on DBMS.
Akademie d. Wiss. der DDR. Inst. f. Informatik und Rechentechnik, Berlin (DDR). Apr. 1988.
14. J. Guttag. Abstract Data Types and the Development of Data Structures. CACM 20/6, June 1977.
15. W. Henhapl, T. Letschert. VDM — Vienna Development Method. Informationstechnik it,
29/4, Oldenbourg Verlag Miinchen, 1987.
16. H. A. Klaeren. Algebraische Spezifikation — Eine Einfilhrung, Berlin, 1983.
17. J. Loeckx. Algorithmic Specifications: A Constructive Specification Method for Abstract Data
Types. TOPLAS 9/4. ACM Oct. 87.
18. H. Lorek. Fantasy: Methods and Tools for the Development of Graphic User Interfaces. Proc.
Graphik im Biirobereich. Bad Honnef. IFB 1932. Berlin. Nov. 1988 (in German).
19. J. Nievergelt, H . Hinterberger, K. C. Sevcik. The Grid File: An Adaptable, Symmetric
Muitikey File Structure. ACM TODS 9/1 ACM March 1984.
20. G. M. Sacco. OTTER — An Information Retrieval System for Office Automation. Proc. 2nd ACM
SIGOA Conference on Office Information Systems. Toronto, 1984.
21. H.-J. Schek, P. Pistor. Data Structures for an Integrated Data Base Management and Information
Retrieval System. Proc. VLDB Conf., Mexico, Sept. 1982.
22, H-J. Schek, M. Scholl. Die NF2 — Relationenalgebra zur einheitlichen Manipulation exierner,
konzeptueller und interner Datenstrukturen. Proc. Sprache fur Datenbanken IFB 72,

.

© o =N > o

Berlin, 1983.
Universitat Oldenburg, Received 17. 05. 1989
FB Informatik, Revised 11. 06, 1990

P. O. Box 2503, D-2300 Oldenbury



