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ON ZERO-DIMENSIONALITY IN FUZZY TOPOLOGY

L. PUJATE, A. SOSTAK

The topological notion of zero-dimensionality is extended to the category of (Chang) fuzzy topo-
logical spaces. Some elementary properties of zero-dimensional fuzzy topological spaces are established.
The main result is Theorem 1 characterizing zero-dimensional W, spaces of a given weight 2(k=No)

as subspaces of the universal zero-dimensional space g(T)% where F(T) is the so called fuzzifiCation
on the three-point set 7'={0, 1, 2}.

1. Definition and elementary properties. Extending the notion of a zero-dimen-
sional topological space (see e. g. [2]) to the category CFT of (Chang) fuzzy topolo-
gical spaces [1] we arrive naturally to the following

Definition. A fuzzy topological space (X, t) is called zero-dimensional if there
exists a base P of 1, the elements of which are clopen (=closed and open)
fuzzy sets.

(Recall that a family p of fuzzy sets is called a base of a fuzzy topology t
if p=t and for cach U¢t there exists a subfamily fy—p such that U=V{V: VeBy} (see
e. g [18))).

Remark 1. The classic topological definition of zero-dimensionality includes
in itself an additional assumption of separatedness. Besides, as it is easy to notice,
for a topological space (X, T), whose topology has a base of clopen sets, all
separation properties Tg, Ty, Ty, T3 and T35 are equivalent. The situation differs
essentially in the fuzzy setting (see e. g. the discussion in [15]): weaker separation
axioms for fuzzy topological spaces when combined with such properties as the existence
of a clopen base or compactness type properties do not necessarily imply stronger
separation axioms. Besides, in contrast with the situation in general topology, the most
important fuzzy topological spaces have very weak separation properties: e. g. the fuzzy
real line #(R) [3], the fuzzy unit interval #(/) [4] are not even To-spaces [10]. There-
fore here we use as basic the “pure” definition of zero-dimensionality without specifying
separation properties. Notice, however, that for the proof of the main results (Section 3)
we need to assume the W, separation axiom [14], [15] which is probably the weakest
separation type property considered in fuzzy topology.

In the paper we use the standard terminology and notations accepted in fuzzy
topology (see e. g. [8], [9] or [15] for the undefined notions). The term “a fuzzy topo-
logical space” is used in the sense of Chang.

The proofs of the next four statements are direct and therefore omitted.

Proposition 1. The direct sum (X, 1)=@Da(Xa T) of fuzzy topological spaces
(X T), @€ A, is zero-dimensional iff all (Xu, ta), a€A are zero-dimensional.

Proposition 2. A subspace (Y,ty) of a zero-dimensional fuzzy topological
space (X, t) is zero-dimensional.

Proposition 3. The product (X, ©)=Tlu(Xe %) of zero-dimensional fuzzy topo-
logical spaces (X, ta), @€ A, is zero-dimensional.

Notice, however, that (in contrast with classic topology) the converse does not
generally hold. This can be illustrated by the next

Example 1. Let (X, T) be a zero-dimensional topological space and let o T de-
note the family of all lower semicontinuous functions defined on (X, T) and with values
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in /=[0, 1] (see e. g. [6]). Take now a¢(0, 1), a==1/2, and let 7'={aU: UecT}UT-
It is easy to notice that @7 and 7' are fuzzy topologies on X, (X, ® T) is zero-
dimensional, (X, 7") is not zero-dimensional, but nevertheless the product (X, ® T)X (X, T")
is zero-dimensional.

Proposition 4. If a fuzzy topological space (X, t) has a subbase Tt consis-
ting of clopen fuzzy sets, then (X, t) is zero-dimensional.

2. Behaviour under functors. Let us now study the behaviour of zero-dimensiona-
lity under some important functors of fuzzy topology. First we recall the definitions
of these functors. The iota-functor 1: CFT—Top introduced by Lowen [6] associates
with a fuzzy topolegical space (X, 1) the topological space (X, 1t) where ww={U(¢,
1]: Ugr, 1€/} (i. e. 1t is the weakest topology on X with respect to which all mappings
Ugt are lower semicontinuous). The omega-functor ®: Top—CFT considered by
Lowen [6] associates with each topological space (X, 7) the fuzzy topological
space (X, o 7) where @ 7 is defined in the same way as in Example 1. At last
let A: CFT—CFT be the functor of laminated modification (see e. g. [15], [16]) asso-
ciating wtth a fuzzy topological space (X, 1) the fuzzy topological space (X, A1) where
At is the weakest laminated (=containing all constants; cf [6])) fuzzy topology con-
taining 7. (It is known and easy to notice that A can be characterized as the compo-
sition of functors + and w and that o is the restriction of A to the subcategory Top
of the category CFT).

Proposition 5. If (X, 1) is a zero-dimensional fuzzy topological space, then
its laminated modification (X, 1) is zero-dimensional,” too. In particular, if (X, T)
is a zero-dimensional topological space, then the fuzzy topological space (X, o T)
is also zero-dimensional.

Proof. Let B be a base of t consisting of clopen fuzzy sets. It is easy to notice
that the family o=BU{cx: c€/}, where cx: X—/ is the constant mapping with value ¢,
is a subbase of the fuzzy topology At and besides all U¢o are clopen. To complete
the proof it is sufficient to apply Proposition 4.

Unlike the functors ® and A, the functor 1 does not preserve zero-dimensionality.
This can be shown by the next

Example 2. Let X=/. For each a¢|0, 1] define a fuzzy set S,: X—/ by the
equality Su(x)=ax; for each ag(l, + o) define a fuzzy set Su: X—7 by the equalities
Su(x)=ax il 0=x=l/o and Six)=1 if lja<x=<1; at last, let S..=1. Consider
the family of fuzzy sets o={Si, S,: ¢¢[0, + o]} /X (where S¢=1—5,) and let T be
the fuzzy topology on X having o as a subbase. Obviously each U¢o is clopen and
hence (X, 1) is zero-dimensional. (Evidently, (x, t) is a W-space, too.) On the other
hand, it is easy to notice that 1t is the usual (metric) topology on the closed unit
interval /, and hence (X, 11) is not zero-dimensional.

3. Universal zero-dimensional spaces and embedding theorem. It is well known
that a topological 7-space is zero-dimensional iff it is homeomorphic to a subspace
of the generalized Cantor cube D* (where D is the discrete two-point space {0, 1} and
k is a cardinal which can be taken equal to the weight of the space). Our aim
is to find a similar characterization of zero-dimensionality in the fuzzy setting.

Construction #(7). Patterned after the Hutton unit interval [4), for each linearly
ordered space X a fuzzy topological space #(X) was defined and studied in [12], [13]).
F(X) contains the space X as a crisp kernel and it can be considered as a fuzzifica-
tion of X’; in a certain sense #(X) can play in fuzzy topology a role similar to that
of the space Xin general topology. We need here this construction in the case when X is
the three point space 7'={0, 1, 2} endowed with the natural ordering < . In this simple
case the construction #(7°) can be explicitly described as follows.

The elements of #(7) are the functions 2z.: T—/, a¢/, where 2,(0)=1, z{(1)=aq,
and 2,(2)=0. In an obvious way #(7) can be endowed with the linear ordering “<”
defined by z,<zp iff a=<<p. The fuzzy topology TF(T) °n F(T) can be defined by the
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subbase 6= {Lo, L1, Ly Ro Riy Re} =17 1), where Ly=Ry=0, Ly=Ry=1, R\(2s)=0, and
Li(zs)=0%(=1—a) our notation here is compatible with [12], [13]). On the whole
the fuzzy topology on #(T) looks like ‘t‘g,—(r):{O, 1, Ry, Ly, RyALy, R,V L,}. Noticing

that L{=R, we conclude that all fuzzy sets in T#(T) are clopen and hence #(7) is

zero-dimensional. )

The fuzzy topological space #(T) will play a fundamental role in the sequel which
is similar to the role of D in general topology.

Remark 2. The fuzzification #(D) of the two-point set D consists of the single
element 2: D—/ such that 2(0)=1 and 2(1)=0 and therefore it is quite inadequate
for the study of zero-dimensionality. On the other hand, the fuzzification #(P,) of the
n-point set P,{0, 1,..., n—1}, where n=3, could be used in the sequel just as well
instead of #(7).

As it is shown below the cube F(T)* where £ is an infinite cardinal is a universal
space for zero-dimensional fuzzy topological Wy-spaces of weight <% (see Theorem 1).
Recall that a fuzzy space (X, 1) is called a W-space if for every two distinct points
x, y€ X there exists U¢t such that U(x)FU(y) (see [14], [15], [17]; cf also [7]); this
property can be considered as the weakest condition of 7, type in fuzzy topology
By the weight of a fuzzy space X we call the least cardinality w(X) of its bases
(see e. g. [12)).

Theorem 1.7kc cule F(1) iscunitersal space for ail zero-dimensional fuzzy
topological W,-spaces of weight <k (k=N,). In order words X is a zero-dimensional
fz}zzy tc))fological Wo-space such that w(X)=k iff X is homeomorphic to a subspace
of F(T)~

Proof. Assume that X is homeomorphic to the subspace F(T)%: Then X
being a subspace of a product of a zero-dimensional fuzzy spaces is zero-dimen-
sional, too (see Propositions 2, 3). Besides, #(7’) is obviously a W-space, and there-
fore X is a W-space, too. At last, for an infinite cardinal %2 the weight of F(7T)*
is equal to 2 and hence the weight of X does not exceed 4.

Conversely, assume that (X, 1) is a zero-dimensional fuzzy topological W-space
of weight <k and let C(X, #(7')) denote the set of all continuous mappings from X
into #(7). According to [14], [15] to show that X< #(T)* (up to homeomorphism)
it is sufficient to prove that there exists a family ®=C(X, #(T)), |® |<k, which sepa-
rates points of X (i. e. for every pair of distinct points x, y € X there exists ¢ ¢ ® such
that o(x)==9(y)) and separates points and closed fuzzy sets of X (i. e. for each x¢ X
each closed fuzzy set A and cach € >0 there exists ¢ ¢ ® such that A(x)=e(A)(¢(x))—e
[14], [15]). (We emphasize that the assumption that all the spaces under consideration
satisfy the W,-separation axiom is essential for the validity of this fact.)

Let B be a clopen base of the space (X, t)such that |B|<k and for each U¢
let a mapping fu: X—%(T) be defined by the equality fi{x)=2uw). It is easy to see
that fy is continuous. Indeed, f;N(Lo)=f;'(Re)=0; fF'(Lay=f;'(Ro)=1; f7'(L)x)
= Li(f(x)) = Ly(zuw) = U(x); [5'(Ri)x)=Ry(fu(x))=Ry(2vn)=U(x), and hence the pre-
images of all elements of the subbase o are open fuzzy sets in X. Therefore to finish
the proof it is sufficient to show that the family ®={fy: U¢PB} separates the points
of X and separates points and closed fuzzy sets in X.

The first fact is obvious. Indeed, if x, y€ X and x=y, then there exists a set
Ugr such that U(x)=+U(y). Besides, it is easy to verify that without lossof generality
we can take U¢B. Then f,(x)+fu(y)

For the second statement take some point x¢.X, a closed fuzzy set A and fix
some &>0. Since B is a base it is clear that there exists {J¢B such that U°<A° and
Uf(x)>A9(x)—e. Noticing that fu(U)z,)= sup U(x)=t=R,(z,), we conclude that

/U(.t)-r‘

(fu(U)=R, is a clopen set. However, this means that fu{A) fu(x))= f(OXfu(x))=fu(U
fZ(x))=U|(x)< A(x)+e. Hence @ separates points andf clos)gi’b(fuz)zyfgetlix{l’:‘(z\’).) AR
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Corollary 1. /f X is a zero-dimensional fuzzy topological W,-space, then
X is completely regular.

(If X satisfies the assumptions of the Corollary, then X can be embedded in #(T)".
On the other hand, #(T) can in an obvious way be considered as a subspace of the
Hutton fuzzy unit interval #(/) and hence X is embeddable into #(/)*. Applying [14]
or [15] (cf also [5]), we conclude that X is completely regular.)

Observe, however, that a zero-dimensional fuzzy topological W space need not be
Hausdorff [10], [11], nor even a T,-space [10]: as one can easily see the space F(T)
itself is not 7, (If z4, 2€¢ #(T), U is open in F(T) and U(z.,)=0, then obviously,
Ulzp)=0, too.)

Corollary 2. If X is a zero-dimensional fuzzy topological Wy-space, then
there exists a strongly compact [3] (and hence also compact [6]) zero-dimensional
fuzzy topological space bX containing X as a dense subspace.

(Embed X into #(T)*and let bX be the closure of X in #(7)* According to[12]
Z(T) is strongly compact and hence (by [3]) 6X is strongly compact, too.)

Let #X(T) be the laminated modification of F(7), i. e. FNT)=(F(T), ATF(T)).

In a way quite similar to the proof of Theorem 1 it is quite easy to establish the fol-
lowing laminated version of the previous results:

Theorem 1* The cube #XT)* is a universal space for zero-dimensional laminated
fuzzy topological W,-spaces of weight =k (R=N,).

Corollary 2% [f Xis a zero-dimensional laminated fuzzy topological Wy-space,
then there exists a strongly compact zero-dimensional laminated fuzzy topological
W,-space bX containing X as a dense subspace.
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