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CAUCHY-RIEMANN SUBMANIFOLDS OF LOCALLY CONFORMAL
KAEHLER MANIFOLDS. IIL

SORIN DRAGOMIR, RENATA GRIMALDI¥

One classifies the totally-geodesic real surfaces of a generalized Hopf manifold with flat local
Kaehler metrics. The only complex submanifolds y: M™ — CH" of a complex Hopf manifold having
harmonic components ' are the Kaehlerian submanifolds. Let M™ be a generic Cauchy-Riemann sub-
manifold of a locally conformal Kaehler (l.c.K.) manifold MY if the holomorphic distribution of M"
is completely integrable and its leaves are totally-geodesic in M™, then they are totally-umbilical in

M?. The normal bundle of a complex submanifold of a l.c.K. manifold of positive holomorphic bisec-
tional curvature has no parallel cross-sections.

1. Introduction and statement of results. Let (M, g J) be a Hermitian mani-

fold of complex dimension n, where g denotes the Hermitian metric, while J is the
complex structure. Cf. P. Libermann [20], M*" is said to be a locally conformal
Kaehler (1.c.K.) manifold if there exists an open covering {U;}; ¢ of M*" and a family

{f}i¢1 of smooth real-valued functions f;€C(U)), i€/, such that the local metrics

g=exp(—f)g are Kaehler. Any such two local metrics are conformally related, i. e.
gi=exp(fi—f;) g and therefore are homothetic. Consequently, the local (-forms df;
glue up to a globally defined (closed) 1-form ® on MY, ie. the Lee form.

Let v be the Levi-Civita connection of (M*", g). A Lc.K. manifold whose Lee form
is parallel with respect to v is termed a generalized Hopf manifold, cf. 1. Vaisman
[27), (or a PK-manifold, according to the terminology in [28]).

The geometry of LcK. manifolds has been intensely studied in the last decade
cf. [16), [18], [26] and [30]. Especially the local geometric structure of PK-manifolds is
completely known today due to a deep result of I. Vaisman, i. e. theorem 3.7. in [28,
p- 275). In turn, the study of the geometry (of the second fundamental form) of sub-
manifolds in Lc.K. manifolds is of recent interest, cf. K. Matsumoto [21], B. Y.
Chen & P. Piccinni [8), S. lanus & al [17}, L. Ornea [22]. With the pre-
sent note we continue the investigations initiated in [10], |11}, [12] and [13] and
obtain the following results: '

Theorem 1. Let y: M™— M be an isometric immersion of an m-dimensional
Riemannian manifold (M™, g) in the generalized Hopf manifold M*. If the local
Kaehler metrics of M* are flat (i. e. M is a P,K-manifold) and v is totally-geo-
desic, then M™ has a flat normal connection. Moreover, the induced form o=vy*e
is parallel. Consequently, either w=0, and then M™ is an elliptic real space-form,
or 040 everywhere, and then M™ is tangent to the Lee field of M*".

The Ricci curvature of an arbitrary totally-geodesic submanifold M™ of a PK-
manifold is expressed by

* Work partially supported by G.N.S.A.G.A. of C.N.R. and M.P.L, ilaly.
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m

(1.1) Ric="22 {0 |2g—0@w),

where g=v*g, i. e. M™ is quasi-Einstein, ¢f. S. Goldberg & 1. Vaisman, [16,
p. 118]..Combining (1.1) and Theorem 1 one obtains the complete classification of total-
ly-geodesic surfaces: ’

Corollary.Let M2 be a totally-geodesic real surface (m=2) of the P,K-mani-
fold M. Then M? is a real space-form M2 (k) where either k=c?2 if M?(R)is nor-
mal to the Lee field of M?", or k=0 if M2 (k) is tangent to the Lee field.

Here c#+0 denotes the (constant) length of the Lee form of M?", while & stands
for the (constant) sectional curvature of M2 .

Let M™ be a Cauchy-Riemann (C.R.) submanifold of the generalized Hopf mani-
fold M?", cf. eg. K. Yano & M. Kon [37, p. 79], i.e. M™ carries a pair of com-
plementary (with respect to g) distributions D, D!, such that D is holomorphic, (i.e.
J.(D)=D,, x¢ M™) and D' is totally-real, (i.e. J,(DL)SE (¥),, x€M™). Here E(y)—M"
denotes the normal bundle of the given immersion y. As to complex (i. e. D1 =0)
submanifolds we obtain:

Theorem 2. Any complex minimal submanifold M™ of a P,K-manifold M*"
obeying to ;

]’(1-2) Ay pY=Ary. 20X
or anv tangent vector fields X, Y, Z on M™, is locally analytically homothetic to a
complex Hopf manifold.

Here £ denotes the second fundamental form of vy, while A: is the Weingarten operator
(associated with the normal section &). It is well known that each complex submanifold
of a Kaehlerian manifold is minimal. In turn, if the ambient space is only Lc.K., cf.

Theorem 5.1. of [27, p. 252] one has H= ——;—- B, i.e. the mean curvature vector of y

and the normal component of the Lee field are colinear, such that generally H==0,
i.e. the minimality condition in Theorem 2 is not superfluous. ~

Any isometric immersion y of a Riemannian manifold in the Euclidean space is
known to be minimal if and only if it is harmonic. If the ambient space is a complex
Hopf manifold (endowed with the standard l.c.K. structure, see e.g. [28]), then we
obtain: \ »

Theorem 3. Let v be the local components of an isometric immersion y: M™
—CH". Let B, B\ be respectively the tangential and normal components of the Lee
field of CH". Then v are harmonic (with respect to any coordinate system) if and

only if the mean curvature wector H of v is given by H=—-5 B' and (m—2) B

=0. Consequently the only complex submanifolds of CH" with ' harmonic are the
Kaehler submanifolds. ;

Let M™ be a C.R. submanifold of the Pyk-manifold M?®". Then M™ admits an f-
structure, cf. K. Yano [34], P defined by PX=tan(/X), for any tangent vector field
X on M™. Suppose 030 everywhere. Let U=||o|~'B, B=w*, (where * denotes rais-
ing of indices by g), and V=—PU. We obtain the following: :

Theorem 4. For any totally-geodesic C.R. submanifold M™ of a P,K-mani-
fold the tangent wvector fields U, V are Killing (with respecf to g) provided that ®
has no singular points. .

Let M™ be a C.R. submanifold of the lLcK. manifold M*. Let p = dimgD,,
g=dimDL, x¢M™ If p=0, then M™ is termed totally-real. 1f q=2n—m, ie. J(D})
=E(¥),, x¢M™, then M™ is a generic C.R. submanifold. Moreover, M™ is said to be
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D-geodesic, cf. A. Bejancu (3, p. 39], if 2(X, ¥)=0 for any X, Y¢D. Let 6=wo/
be the anti-Lee form of M?". Let 6=y*0. We obtain the following:

Theorem 5. Let M™ be a C.R. submanifold of the l.c.K. manifold M*".
i) The holomorphic distribution D of M™ is completely integrable and its leaves are
totally-geodesic in M™ if and only if either M™ is totally-real or for any X, Yt D,
ZeDL, one has

(1.3) 2(h(X, V), JZ)+—5 g(X, ¥)0(2)=0

and any leaf of D is tangent to B. Moreover, if (1.3) holds and M™ is generic,
then all leaves of D are totally-umbilical in M*".

ii) If D is completely integrable and its leaves are totally-geodesic in M3, then M™
is D-geodesic. Conversely, if M™ is D-geodesic and tangent to the Lee field of M,
then the holomorphic distribution of M™ gives rise to a complex foliation on M™
whose leaves are totally-geodesic in M?".

Let m:Gy(M™—M" be the Grassmann bundle of all 2-planes tangent to M™. Let
Riem: G,(M™)—R be the Riemannian sectional curvature of (M™, g). Then a 2-plane
Po€ Gy (M™) is termed anti-holomorphic if J(p,) and p, are orthogonal; if additionally
Po=Dr (o, then p, is said to be D-anti-holomorphic. Next, cf. A.Bejancu [3, p. 96]
the D-anti-holomorphic sectional curvature of the C.R. submanifold M™ is the restric-
tion of Riem to the D-anti-holomorphic planes of M™. Moreover D' is said to be
D-parallel if yyY ¢ DL for any X¢D, and Y ¢DL. Here y denotes the Levi-Civita con-
nection of (M™, g). We obtain the following:

Theorem 6. Let M™ be a C.R. submanifold of the complex Hopf manifold
CH"(c). Let us assume that i) D' is D-parallel, ii) there is a constant A>0 such that

(1.4) I 2o+ o < 524,

Then all D-anti-holomorphic sectional cunlztures of M™ are =A.

Let vl be the normal connection of the submanifold y: M™—M?" of the Rieman-
nian manifold M2". A cross-section & is said to be parallel if y1£=0. We obtain the
following :

Theorem 7. Let M™ be a complex submanifold oy a lc.K. manifold of posi-
tive holomorphic bisectional curvature. Then M™ admits no parallel sections in the
normal bundle. :

2. Basic formulae. Let M?* be a lc.K. manifold and {g;}:/itslocal metrics; since

each  g; is Kaehler, one obtains dQ=0AQ, where Q is the Kaehler 2-form of M?*",
ie. Q(X, Y)=g(X, JY). Clearly, if ©=0, then g is a Kaehler metric. The Lc.K. mani-
fold M?" is said to be strongly non-Kaehler if its Lee form has no singular points,
ie. o, 40, for any x¢ M. There exist various examples of complex manifolds which
admit no Kaehler metrics and, in turn, possess natural Lc.K. metrics, cf. eg. F. Tri-
cerri [26]). For instance, let A be a fixed complex number, 0<|A|<1. Let Gs be the
0-dimensional Lie group of analytic transformations of C"—{0}, n>1, generated by
z—Az, z€C"—{0}. Ci. [19, p. 137), vol. II, G, is a properly discontinuous group acting
freely on C"—{0}, and thus the factor space CH"=(C"—{0})/G. admits a na-
turally induced structure of complex manifold. This is the well-known complex Hopf
manifold. Its first Betti number is b,(CH")=1, and thus CH" admits no Kaehler me-
trics. Yet the Hermitian metric ds?=|z|-%,d2/® dz/, |z[8=38,2'2), z=(2', ..., 2"), of
C"—{0}, is Gx-invariant and thus gives rise to a well-defined Hermitian metric g on
CH". This was observed to be a lL.c.K. metric on CH", (see [28]); it is referred to as
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the Boothby metric of CH". The complex Hopf manifold endowed with the Boothby
metric possesses several particular features, i.e. its Lee form o=dlog|z[? is parallel
(with respect to the Levi-Civita connection of g), its local Kaehler metrics (i.e.
8,d2'®dz’) are flat, ie. CH" is a P,K-manifold. Moreover, |jo|| = 2. Of course, (CH",
g) is strongly non-Kaehler.

Let M?" be a l.c.K. manifold. The Levi-Civita connections vy’ of the local Kaehler

metrics g, are known to glue up to a globally defined torsion-free linear connection
D on M*, ie. the Weyl connection. It is expressed by

(1) DyY =yy¥ —— {0 (X) Y+ 0 (V) X—g (X, Y)B).

Here B=o* (raising of indices is understood with respect to g). The tangent vector

fields B and A= —JB are referred to as the Lee and anti-Lee fields of the l.c.K. mani-
fold M*. Each v’ is almost-complex, such that J is parallel with respect to the Weyl
connection, i.e. DJ=0. Thus (2.1) leads to: -

(2.2) ValY =JVxY + 4 {0(Y) X—0(Y) JX—g (X, ¥)A—Q(X, V) B).

As a consequence of (2.1) the curvature tensor fields K, R of D, v respectively are
related by -

(2.3) K(X, NZ=R(X, Y)Z—%{Z(X. 2)Y=L{Y, Z)X
+2(X, Z)L(Y, ) =g (Y, DLX, V)= [0 FXANZ

where L=yo+ 50 ®o. See also S. L Goldberg [14, p. 115].

Let M™ be a submanifold of the lLc.K. manifold M2"; we shall need the Gauss
and Weingarten formulae

(2.4 VXY =yXY+h(X, V), Vib=—AcX+VXE

for any tangent vector fields X, ¥ on M™, respectively any cross-section & in E(y)
—M"™. Let tan,, nor, be the natural projections assoctiated with the direct sum decom-
position 7, (M*)=T,(M™) « E(y),, x¢M™. We set, as usual, FX=nor (JX), &= tan(J3),
f&=nor (JE), where X is tangential, while & is normal. We define covariant derivatives
of P, F, tand f in terms of v, v' in the usual manner, ie. cf. [37, p. 77]. Set
A=tan(A), B=tan(B), AL —=nor(A) and B! =nor(B). By (2.2) and (2.4) one obtains
the following identities : :

(25) (VyP) Y =AmX+th (X, Y)+ -,_l (V) X—o(Y)PX—g(X, Y)A—Q(X, Y)B},
(2.6) (VxF)Y=—h(X] PY)+fh(X, y)-—;- {o(Y)FX+g(X, Y)AL+Q(X, Y)B'},
(2.7) (Vxt) &= ApX—PAX +»—;- {0(8) X—0 (&) PX—0(X, £) B},

@8) (Vaf)b=—h(X, )~ FAX—y {0 &) FX+ (X, &) B),
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where Q=y*Q. Suppose now that M?" is a PyK-manifold. Then by (2.3) the curvature
of M?" has the following expression:

29) R(X ¥V)Z=-{6(X) Y- (V) X|a2)+[g(X. 2)a(—F (Y. 2)a(X)IB}
++loFXAY) Z.

Consequently, the Gauss-Codazzi-Ricci equations (i.e. eq. (2.6)—(2.7) and (2.11) in ref-
[4, p. 45 —47]) of M™ in the P,K-manifold M?*" are

210)  R(X. V)Z=Ayq. 9 XAy 2 V4 (0(X) Y—0(¥) X]0(2)

+g(X, 2)0(V)—g(¥, 2)0(X)| By+— | 0| {g(¥, Z)X—g(X, 2)Y},

@11)  (VahXY. D)~ (W)X, Z)= Y {g(X, 2)o(V)—a(Y, Z)o(X)}B,

(2.12) 2R (X, V)& n)=g((As, A X, V).

Here R, RL denote respectively the curvature tensor fields of v, y+t.
3. Totally-geodesic submanifolds of generalized Hopf manifolds. Suppose v is
totally-geodesic, i. e. #=0. By (1.12) in [4, p. 41] and (2.4), it follows that M™ has a

flat normal connection, i.e. RL=0. As yo=0, the Gauss formula in (2.4) leads to
(3.1) vxo=A4, X

Therefore, if =0, then ® is parallel, too. Thus ||a)(u=const. Consequently, either =0
ie. M™ is normal to the Lee field of M?*, or @40, at any x¢M™. If thisis the case
then BL=0, i.e. M™ is tangent to the Lee field of M*", as a consequence of the Codazz
equation (2.11). The proof is by contradiction. Indeed, if BL were non-vanishing at
some x¢M™ then (u, w)o,(v)—(v, w)w,(@)=0, for any u, v, w¢T,(M™). Here
(,)=g.. For u arbitrary, we may choose v=w, || v|=1, (@, ©)=0. Thus ©,=0,is a con-
tradiction. Our Theorem 1 is completely proved. Of course, we are concerned with the case of
a non-Kaehler (ie. ||@|/<=0) ambient P,K-manifold.Thus, if M™ is normal to B, then
BL is nowhere vanishing,

To prove the corollary, let us put ¢=|/@|, ¢>0. Thus, if ®=0, then M™ is an
elliptic space-form (the constant sectional curvature equals ¢?/2) by (2.10), provided
that #=0. For the remaining situation (i.e. when BL=0) the Ricci curvature of M™,
obtained by suitable contraction of indices in (2.10)) is given by (1.1). This yields our
corollary. Indeed, if BL=0, then (1.1) holds and thus M? is Ricci flat. Consequently
R=0, i.e. M? is flat (for surfaces the two notions are known to coincide).

4. Complex submanifolds of generalized Hopf manifolds. Let us examine now
the case of invariant (i.e. J, (T (M™)=T,(M™), x¢ M™) submanifolds M™ in the PK-
manifold M?". Using (2.2) and the Gauss formula in (2.4), one obtains

@) (X, JY)=Jh(X, Y)—5 (€(X, V)AL +Q(X, Y)BL}.

Note that (4.1) also furnishes k(/X, JY)=—h (X, Y)—g(X, V) BL. Therefore, the mean
curvature vector H= ;}i— Trace(h) of y is expressed by

(4.2) H=——BL.
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Hence, if y is minimal (H=0), then by (3.1) one has ||®|=const. Therefore, as c¢30
a minimal invariant submanifold of a PK-manifold is a strongly non-Kaehler PK-mani-

fold itself. Let us prove now our Theorem 2. To this end, let g;=vy*g, i€/ Set DyY

=tan(D,Y), for any tangent vector fields X, ¥ on M™. Then D is a torsion-free li-
near connection on M™ By (2.1), (2.4), it is related to the Levi-Civita connection of

(M™, g) by
(4.3) DyY =vyY——-{o(X)Y—o(Y) X—g(X, Y)B)}.

Clearly D is the Levi-Civita connection of the induced local metrics g. Let K be its

curvature tensor field. Let S(X, Y)=nor (DyY), where X, Y are tangential. Again (2.1}
(2.4) furnish

(4.4) S(X, Y)=h(X, ¥)+-1 g(X. ¥)B".

By Equation (2.6) of [4, p. 45] one has
(4.5) &KX, Y)Z, W)=g(S(X, W), S(Y, 2))—&(S(X, 2), S(Y, W)

provided that M?" is a PyK-manifold (i.e. K=0). Actually (4.5) is the Gauss equation
of M;=M™" U, in the flat Kaehler manifold (U,, g, v). Itis supposed tacitly that the
imbedding y: M™ — M?" is regular, such that M, is open in M™. Assume now that M™
is invariant and minimal. Let m=2s. Then, since ©=0, by our (4.4)—(4.5), M¥ is a
PyK-manifold if and only if (1.2) holds. As s=2 (indeed, if s=1, then dQ=0 and M?
is Kaehler; thus ©=0, a contradiction) one may apply Theorem 3.8. in [28, p. 277] to
obtain our Theorem 2.

Let y: M™ — CH" be an isometric immersion of the Riemannian manifold (M™,
2) in the complex Hopf manifold endowed with the Boothby metric. Due to the Vais.
man theorem, i.e. theorem 3.8. of [28,p. 277],a PyK-manifold with ||o||=c will be de-
noted by CH"(c). To unify notation CH"=CH"(2). If {E;}1ca=m is atangential ortho-
normal frame, the Laplacxan (on functions) A of M™ is given by

(4.6) Af =8 {E,(E, (1) —(Ve,E)f)}
for any feC=(M™). Let (U, xf) be a local system of real analytic coordinates on CH"

Let wi=xioy, 1<i<2n, be the equations of M™ in CH". The Weyl connection D of
CH" satisfies

(4.7) : Dr E,=E, (Ev) 59;, i

On the other hand, (2.1) leads to

(48) Di,Eo=VeEat 5 B—0(E)En
At this point (4.6)—(4.8) and (2.4) lead to

(49) Avi=mH—B(y')+ 5 B(¥').

Thus ' are harmonic if and only if (4 2) holds and (m—2) B=0. Let M™ be inva-
riant. Then (4.2) holds. Thus Ay/=0 yields either m=2 (and thus dQ=0) or m#2
and then B=0, by (4.9).

5. Proof of theorem 4, Let M™ be a C.R. submanifold of the LcK. manifold.
M?*, Note that P is D-valued, while F vanishes on D; thus P3+¢F=—[ and P*+P
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=0, i.e.P is an f-structure on M™. This is stated in [37, p. 86] under the assumption
that M2?" is Kaehler, but clearly holds for the general case of an almost Hermitian
ambient space. We consider only C.R. submanifolds (of PK-manifolds) obeying ®,=0,
at any x¢ M™. Thus we may set u=|o|~'o, U=u*. The following identities are
obvious:

(5.1) U=—voP—uotoF, u(V)=vU)=0, V=—PU,
where v=uoP, V=v*. Indices are rised with respect to g. Next one has
(5.2) A=|o|V—tB, Al=—|o| FU—fB.

Clearly Q(X, Y)=g(X, FY). Set a=%|‘m!l. Substitute ©=2az in (3.1). Since y is
torsion-free and # symmetric, da ® # must be symmetric, too. Thus da=U(a)ua. This
yields

(5.3) avu+ U()u @ = @oh.

Applying the isomorphism * to (5.3), we also obtain

(5.4) VU= Ay —U (loga)a@U.

As vy is the Levi-Civita connection of (M™, g) we may write

©5) 28(VxU, ¥)=2(du)(X, ¥)+(Lyg)X, Y).
Here L denotes the Lie derivative. Note that da Au=0; therefore do=0 leads to du=0.
At this point (5.4)—(5.5) give

(56) (Log)X. V)= 8(Ag. X, ¥)—2U (log a)u (X)u(Y).

Therefore, if M™ is tangent to the Lee field of M?", then U is a Killing vector field,
for the induced metric g. To prove the second part of Theorem 4., note that (5.1), (5.4)

lead to v

67) vV =—(WaP)U.

At this point we may use (2.5) and the identities 6 (U)=0, @ (U)=2q, Q(U, X)=v(X),
such as to obtain (yxF)U= -—uPX—% u(X)A +—%— v(X)B. Let us substitute in (5.7).
We obtain

(5.8) . yV=eP+-{u® A—v®B}.

Finally, 65.8) and (Lyg)X, Y)= g(vyV, Y)+g(X, vyV) lead to L,g=0, provided
that A=0. ;

6. Holomorphic distributions with totally-geodesic leaves. In this paragraph we
shall prove our Theorem 5. To this end, suppose D is integrable. Let L be a leaf of D
and i: L — M™ the canonical inclusion. We denote by v~ A respectively the Leyi-
Civita connection of i*g and the second fundamental form of i Let us assume AL=0,
By the Gauss formula vyY =vyY, ie. yx¥Y¢D, for all X, Y¢D.Using this fact, (4.4) and

DJ=0, one obtains

(6.1) gh(X, V), JZ)+-5 8(X, ¥)0(2) = —5 Q(X, Y‘)m(Z)
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for any X, Y¢D, Z¢D!. Now the left hand (respectively the right hand) member of
(6.1) is symmetric (respectively skew-symmetric) in X, Y. Consequently, both sides of
(6.1) vanish, one leading to (1.3), the other giving Q(X, ¥)w®(Z)=0. We distinguish two
possibilities. Either p=0, i.e. M™ is totally-real, or p+0, and then ®=0 on DL, ie.
B¢D. Conversely, let us see that (1.3) yields the involutivity of D. Let X, Y¢D,
ZeDL, As_D— is torsion-free and almost-complex, we obtain g([X, Y], Z)=g(S(X,
JY), JZ)—g(S(Y, JX), JZ). Substitution from (4.4) leads to g([X, Y], Z)=g(kh(X,JY),
JZ)—g(h(Y, JX), JZ)+Q(X, Y)0(Z), ie. g([X, Y], Z)=0 as a consequence of (1.3),

Let 1, 1/ be the natural projections of the direct sum decomposition 7T,(M™)
=D,®D]. The next step is to show that under the assumptions (3.1) and 1!B=0,

each leaf L of D is totally-geodesic in M™. Using (2.1) and DJ=0, for any X, Y ¢D,
ZeDL, one has

gt (X, Y), Z)=g(vxY, Z2)=g(VxY, Z)=8(DyY. Z)—%g(z\’- Y)g(B, Z)
=g(DyIY,JZ)— 5 g(X, V)0 (2)=g(S(X, JY), JZ) — - g(X, Vo (2).

Now we use (4.4), (1.3) and the fact that D! — L is precisely the normal bundle of
i: L —M" such as to obtain 3

(62) ht=—— g@1'B.

Thus (1.3) by itself yields totally-umbilicity of i: L — M™. Finally, by B¢D, our i is
also minimal. To prove the second part of the statement i), let M™ be a generic C.R.
submanifold. Then the normal bundle of M™ in M** is precisely J(DL1)— M™ and
thus (1.3) gives

(6.3) _ (X, ¥)=—- g(X, ¥)B!
for any X, Y¢D. Since h-=0, the second fundamental form of L in M** is precisely
(6.3). 3

Suppose now that D is integrable and its leaves are totally-geodesic in M*". Con-
sequently, vx¥ €D, for all X, YeD. Let & be a cross-section in E(y): then g(k(X,
Y), &) =g (vxV, §)=0, ie. M™ is D-geodesic. Conversely, suppose M™ is D-geodesic.
Then computation (similar to the proof of (6.2)) leads to

(6.4) . U X Y]=—Q(X, Y)¢BL

for any X, Y€D. Our Theorem 5 is completely proved.
7. Pinching on C.R. submanifolds. Let M™ be a submanifold of the PyK-manifold

CH"(c), c¢=| ®||. Let Riem: Gy(M™)—R be its Riemannian sectional curvature. Let X,
Y be two orthonormal tangent vector fields on M™; the Gauss equation (2.10) leads to

(7.1)  Riem (o5)) =5~ ¢ [0(XP+0 (VP +2(h (X, X), k(Y. V)—[ R(X, V).

Here oy ¢ Gy(M™) is the 2-plane sﬁanned by X, Y. Let {&}i<as2n-m be a (locally de-
fined) orthonormal frame of E (y)— M™. Set A=A, 1=a=<2n—m. For any tangent
vector fields X, ¥ on M™, suitable contraction of indices in (2.10) furnishes the fol-
lowing expression of the Ricci curvature:
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a2 Ric (X, V)=ma(h(X, ), H)—%gng‘(AzX. Y)

+ - {m=1) =0} g(X, N—"TEa(X) o (Y).

Let {E}i<i<m be a (locally defined) tangeniial orthonormal frame. Set %(E, E))
=h3t,. Then ,

ijra*

(3) ko= = chsp.

Moreover, by (7.1), the sectional curvature of the 2-plane spanned by E,, Ej ey AT
expressed by
; g A
(7.4) Riem (0g,£,) =5 — 4 {03+ 03} + - {heh2,— (%)),
where o (E;)=0;. We need to establish the following:
Lemma 7.1. Let M™ be a proper (ie. p=0, ¢-=0) C.R. submanifold of the l.c.K.

manifold M®". Then its totally-real distribution is D-parallel if and only if (1.3)
holds and B¢D.

Proof. The proof follows from g(k(X, Y), JZ) + —;-g(X, Y)0(Z2)=g(Y, vx2)

—%Q(X, Y)o(Z), for any X, Y¢D, Z¢DX, by computations similar to those car-
ried on during the proof of Theorem 5.

Remar k. Cf. our Theorem 5, the totally-real distribution of M™ is D-parallel if and
only if D is integrable and its leaves are totally-geodesic in M™.

Let us prove our Theorem 6. Let v, be the orthogonal complement of J, (DY) in
E(vy),, x¢ M™. We choose an orthonormal frame on CH"(c) in the following manner.
Let p,€Gy(M™) be a D-anti-holomorphic 2-plane on M™ and let {£,, £,} be an ortho-
normal pair of tangent vector fields such that E;€¢D, i=1, 2, and {E, Eq.} span p,,
where x=mn(p,). Let {E hsaz, be an orthonormal frame of D, otherwise written {E,
Ei), En=JE, i*=i+p, 1<i=p. Next we consider F,¢D*, l=a=g, an orthonormal
frame. Set F,.=JF, a*=a+q. Finally,' let {Vi, Vi), Vae=JV,, 1<a=r, a*=a+7, be
an orthonormal frame of v. Here 2r=2n—m—gq. Then {E,, F, Fas, Va Vo} is an
orthonormal frame on CH"(c), such that {E, E:, F,} are tangential, while {Fa+, Vi, Var}
are normal. As D' is supposed to be D-parallel, by Lemma 7.1. we obtain

(1.5) B 4 5 0(Fp) =0,

Consider Y¢D. By (2.2), (2.4), one obtains

(7.6) h(X, JY)=FyyY+fh(X, Y)—-—;—{w(Y)FX+g(X, Y)AL4+Q(X, Y)BL}

for any X tangent to M™. Suppose now X¢D. Since, as observed above, one may
combine Lemma 7.1. and Theorem 5, it follows that the leaves of D are totally-geodesic
in M™, ie. yxY€D. But F=0 on D such that (7.6) becomes

(7.7) h(X, JY)=fh(X, Y)——;—{g(X, V)AL +Q(X, Y)BL)

Consequently

(18)  h(UX, JY)=h(X, ¥)—5 (8(X NIfAL+B—Q(X, Y)fB:+AL)
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for any X, Y¢D. The following identities hold :

(7.9) Pt+tf=0, Ft+fi=—i

as direct consequences of definitions. But ¢ is D-1-valued, while P=0 on D<L. Thus
Pt=0. By (7.9) one also has ¢f=0. Now, if Z¢DL, then g(fFZ, &)=g(Z #%)=0,
such that fF=0. Consequently f vanishes on /(D). Note also that the following
identities hold: "

; 0(F)=(B4)",
(7.10) (BLy=—(ALy =0 (V)
(BLy* =(AL) =0(Va).
Now (7.8) leads to

ha _ha

g o

1
L [GAL

(7.11) hisje=—hi—o (Va) 8y,
hisje=—hl — 5 8(Va) 8y
On the other hand, (7.4) shows that :
(7:12) Riem (po)z — [w2+ o]+ Z {h¢ hS,—(R2,)2}
+§{h,, ks — (P — ).

Following the line in [4, p. 98], one obtains
(7.13) | 22= 22{(/1 »— h;’,hgg}+22{(}z —h§ kg, + (R — Ry g}

Finally, (1.4), (7.12)—(7.13) lead to Riem(p,)=A, Q.E.D.

8. Proof of Theorem 7.Let M?" be a l.c.K. manifold. Let o, ¢’ be two holomor-
phic 2-planes on M*"; we recall, cf. [23], [24], the concept of holomorplzlc bisectional
curvature of M?", ie. if n(c)=n(c")=x, xe M?", and if u(o, v€o’ are two unit tan-
gent vectors, then we define

Riz (o, o')=(R, (v, J,v)Ju, w),

where (,)=g,. The definition of Riz (o, o’) does not depend upon the choice of unit
vectors u, v in o, o’, respectively.

The proof of our Theorem 7 is by contradiction. Let M™ be a complex submanifold
of a Lc.K. manifold obeying Riz>0. Suppose & is a parallel section in E(y). Then
R (X, Y)E=0 and the Ricci equation, i.e. eq. (2.11) of [4, p. 47] leads to

8.1) ER(X, V)& n)=—g(As, An] X, Y).
Let X be a unit tangent vector field. Let Y =JX, n=JE, in (8.1). If £4+0, then there
is x¢ M™ such that £,=0; let N=||E,|7,. Let o, o’ be the holomorphic 2-planes
spanned by {u, Ju}, u=X, and respectively by {N, J,N}. Then we may combine (8.1)
and the following:

Lemma 8.1. For any cross-section & in the normal bundle of a complex sub-
manifold M™ of a lc.K. manifold the following identity holds :

(8.2 (A Ap]=—2J {A¢+—2~ o (8) 1P,
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where | denotes the identical transformation.
Indeed, as A:+4 (€ is seli-adjoint, (8.1){8.2) lead to

(8.3)

a contradiction. All we need is to prove Lemma é,l.This follows by computation from
the identities

(8.4)

|&, [PRiz (0, 0')=—2|} AeX+ 5 0(8) X [3=0

Ar=JA:+-5{0 € /=8 1)
JAr=—AJ—0 ) J.

In turn, (8.4) is a consequence of (2.2), (2.4).

—

—
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