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COMMUTATIVITY CONDITIONS OF ONE-SIDED s-UNITAL
RINGS WITH CERTAIN CONSTRAINTS

HAMZA A. S. ABUJABAL

In this paper we prove the following commutativity theorem : Let n>0,m, £, and s (resp. m>0,n, 8
and s) be fixed non-negative integers such that (n, ¢, m, s)=(1, 0, 1, 0), and let R be a left (resp. right)
s-unital ring satisfying the polynomial identity ' [x", y]=[¥", x]ys for all x, y€R. If further R pos-
sesses Q (n) property (that is, for all x, y€R, n[x, y]=0 implies [x, y]=0), then R is commutative.
If Q (n) property is replaced by m and n are relatively prime integers, then R must be commutative.
Also, the commutativity of R has been proved under different sets of conditions.

1. Introduction. The advent of the twentieth century marks the beginning of the investi-
gation of classes of rings which turn out to be commutative under certain constraints. An ear-
lier example is the Wedderburn theorem, which states that a finite division ring is neces-
sarily commutative. While studying the commutativity of rings, one encounters the
difficulty that there is no clear cut way to allow cancellation among the elements of
rings, which is permissible in case of groups. The objective of the present paper is to
igvestigate the commutativity of left and right s-unital rings satisfying the polynomial
identity

xt[x" yl=[y™ x]y* for all x, YER,

where n, m, s, and ¢ are fixed integers, under different set of conditions.

To establish commutativity of a ring R with the above polynomial identity, we
need some additional properties on R (commutators). They frequently concern the tor-
sion freeness of the commutators in R, like the following property:

Let n be some positive integer. Then

Q(n): for all x, y€R, n|x, y]¥0 implies [x, y]=0.

The property Q(n) is an H-property in the sense of [9]. Obviously, every n-tor-
sion free ring R has the property Q(n), and every ring has the property Q(1).

2. Preliminary results. Throughout this paper let R denote an associative ring
(with or without unity 1), Z(R) the center of R, C(R) the commutator ideal of R,
N(R) the set of all nilpotent elements in R, and N'(R) the set of all zero-divisors in
R. For any x and y in a ring R (resp. group G), we write as usual [x, y|=xy—yx
(resp. [x, y]=xyx~'y~'). By GF(q) we mean the Galois field (finite field) with ¢
elements, and by (GF(g)), the ring of all 22 matrices over GF(q). In (GF(q))y we
set en=((1)\ 8} e,,:(g (1)), e"'—_((l) 8), and e,,=(g (l)) '

Definition 1. A ring R is called a left (resp. right) s-unital if x¢Rx (resp.
X€XR), for all x¢R. Further, R is called an s-unital ring if it is both left as well
as right s-unital, that is x¢Rx xR for each x¢R.

Definition2. If R isan s-unital (resp.left or right s-unital) ring, then for any
finite subset F of R, there exists an element e¢ R such that ex=xe=x (resp. ex=x
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26 H. A. S. Abujabal

or xe=x) for all x¢F. Such an element e is called the pseudo (resp. pseudo left
or pseudo right)-identity of F in R.

We shall require the following well-known results:

Lemma 1 ([2, Lemma 2]). Let R be a ring with unity 1, and let x and y be
elements in R. If kx™[x, y]=0 and k (x+1Y"[x, y]=0 for some integers m=1 and
k=1 then necessarily k|[x, y]=0.

Lemma 2 ([14, Lemma 3]). Let x and y be elements in a ring R. If [x, [x,
y]]=0, then [x*, y|=kx*1[x, y] for all integers k=1.

Lemma 3 ([17, Lemmal]). Let R be a ring with unity 1, and let x and y be
elements in R. If (1—y*) x=0, then (1—y*")x=0 for any integers k>0 and m>0.

Lemma 4 ([4, Theorem 4 (C))). Let R be a ring with unity 1. Suppose that
for each x¢R, there exists a pair n and m of relatively prime positive integers for
which x"¢Z(R) and x™¢Z(R). Then R is commutative.

Lemma 5. Let x and y be elements in a ring R. Suppose that there exists re-
lz;tifaely prime positive integers n and m such that n [x, y]=m|x, yl=0. Then |x,
y]=0.

Proof. If n>0 and m>0 are relatively prime integers, then there exist integers
t and s such that 1=¢n+sm. Thus [x, y]=tn[x, y]+sm[x, y]=0.

The following theorems play an important role in proving our results. The first
and the second are due to I. N. Herstein [7, Theorem 18] and [8, Theorem] res-
pectively, and the third due to T. P. Kezlan [10, Theorem] and H. E. Bell [3,
Theorem 1] (also see [9, Proposition 2]).

Theorem H. Let R be a ring, and let n>1 be a fixed integer. Suppose that

(x"—x)€ Z(R) for all x€R,

then R is commutative.
Theorem H'.If for every x and y in a ring Rwe can find a polynomial p., ,(t)
with integral coefficients which depend on x and y such that

[x—X%p,, y(x), ¥]=0,

then R is commutative. 4

Theorem KB. Let f be a polynomial in n non-commuting indeterminates x,,
x:z'l ..., X, with relatively prime integral coefficients. Then the following are equi-
valent : ;

(1) For any ring R satisfying f=0, C(R) is a nil ideal.

(2) Every semi-prime ring satisfying f=0 is commutative.

(3) For every prime p, (GF(p))y fails to satisfy f=0.

3. Results, The objective of the present paper is to prove the following results:

Theorem 1. Let n>0, m, t, and s (resp. m>0, n, t, and s) be fixed non-
negative integers such that (n, t, m, s)=(1, 0, 1, 0). Let R be a left (resp. right) s-
unital ring satisfying the polynomial identity

(D xt[x", y]=[y", x]y* for all x, yE€R.

Further, if R possesses Q(n) property, then R is commutative.

First we prove the following lemma:

Lemma 6. Let n>0, m, t, and s (resp., m>0, n, t, and s) be fixed non-nega-
tive integers such that (n, t, m, s)4=(1, 0, 1, 0). Suppose that R is a left (resp.
right) s-unital ring satisfying the polynomial identity (1). Then R is an s-unital ring.

Proof.Let x and y be arbitrary elements of R, and choose an element e¢R such
that ex=x and ey=y (resp, xe=x and ye=y). If either m+1 or s>0 (resp.,, n=l
or £>0), then (1) gives



-

Commutativity conditions of one-sided s-unital rings with . .. constraints 27
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(resp.
x=em"x—x"t' + x'ex" = (em™—x't"1 4 x'ex" 1) x € RX). \
On the other hand, if (m, s)=(1, 0) (resp. (n, £)=(1, 0)), then (n, £)==(1, 0) (resp. (m,
s)#F(1, 0)). Thus
x=xe—x"*"+ xt*" = x (e—x!t""14 x!+"—1e) ¢ xR
(resp., :
y=ey—ym"tit+ey™t=(e—y™+*—1Ley"+ )¢ R)

Therefore, R is a right (resp., left) s-unital ring, and hence R is an s-unital ring.

Proof of Theorem 1. According to Lemma 6, R is an s-unital ring. Therefore, in
view of Proposition 1 of (9, it suffices to prove the theorem for R with unity 1.

We distinguish two cases:

(I) First, we consider the case n>1. Let x=e,,, and y=ey,, in (GF(p)), for any
prime p. Then it is easy to check that x and y fail to satisfy the polynomial identity
(1), for m=1. Next, if m=0, let x=e,, and y=e Again, we find x and y fail to
satisfy (1). Therefore, by Theorem KB, we have C(R)SN(R).

Now, let a¢ N(R). Then there exists a positive integer ¢ such that

(2) a* ¢ Z(R) for all &' =¢q, where ¢ is minimal.
Suppose g>1. Replace x by a?~! in (1) to obtain
: (@1 (a1, y)=[y™, a®]y* for all yeR.
In view of (2) and the fact that (g—1)7=g, the last identity implies
[y", a1 y*=0 for all y€R.
In (1), replace x by (1+a?1) to get
(1 +a 2 [(1+aY, yl=[y" (1+a%)y* for all yER.
Thus, for all y¢ R, we have _
n(l+a% 1y [a?71, y]=(1+a? Y [(1+a?7), yl=[y", (1+a?N)]y*
=[y™ "] y'=0.
But (1+a?1) is an invertible element in R. Hence,
; nla?, y]=0 for all y¢R.
Since R possesses Q(n) property, the last polynomial identity implies that
[a?1, y]=0 for all y¢R.

Thus we have a cotradiction to the minimality of ¢, (see (2)). This contradiction shows
that g=1. So N(R)=Z(R). Therefore,

3) C(R)YEN(R)ZZ(R).

Since, by (3), we have [x, [x, ¥]]=0 for all x, y¢ R, we shall routinely apply Lemma 2
without explicit mention.
Now, if m=0, then (1) becomes

nxt+n—1 [X, y]ao fOI" all x, VER.

Replacing x by (x+1) and applying Lemma 1 to the last polynomial identity gives
nlx, le'=0 for all x, y¢R. As R has Q(n) property, we obtain [x, y]=0, for all x,
Yy €R. Therefore, R is commutative.

Suppose mz1, In view of (3), the polynomial identity (1) becomes
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4) nx'+"=x, yl=m|y, x]y**"t=my**"1y, x] for all x, YER.
Let [=(2¢*"—2). Then [>1, for n>1. By repeated use of (1), we have
I [x%, y]=(21+"—2) ¥ [x", y]=(x)[(2x)" y]—2x'[x", ¥]
=(2xY [2x)", yI=2[y™ x]y*=(2x) [2%)" y]—[y™ (2%)]y°=0,
for all x, y€R. Let k=In>1. Then kx'*"'[x, y]=0 for all x, y€R. Replacing x by

(x+1) and applying Lemma 1, we get k[x, ¥]=0 for all x, y€ R. So [x* y]=kx*"![x,
y]=0 for all x, y¢R. Therefore,

(5) x*¢ Z(R) for all x¢R.

Now, we consider the following cases:
(i) Let m>1. Then (1) gives

5] St y)=m[y, x]y*+m=1 for all x, y¢R.
Replace y by y™ in the above identity to obtain
xt[x" y"l=m[y™, x]yme+m-D for all x, YER.

So

mx! [x", y|y"t=m[y", x]y™+mD,
and hence

mlym ]y mi=mym Xy,
Thus

my™ xy'+ 7 (1 =y =) =0,
In view of Lemma 3, we get
6) m[y™, x]ys+m1(1—yre-E+m—10)=0 for all x, y€R.

It is well known that R is isomorphic to a subdirect sum of subdirectly irreducible
rings R, (i€/, the index set). Each R; satisfies (1), (3), (4), (5), and (6), but R; is not
necessarily having the property Q(n). Thus, we let S be the intersection of all non-
zero ideals of R, Hence, S+0. Let v be a central zero-divisors in R. Then, it can be
easily verified Sv=0.

Let u¢ N'(R)). By (6), we have

mu™, x]ustm=1(1—uk"-De+Em=0)=0 for all x¢R;.
Suppose that
mlu™, x]jus+t"140 for all x¢R,.
Then u*™=bE+m=1_ and (1—gk(™—HE+"=D) are central zero-divisors. So
(0)='S(1 —-ghm=1) (s+m=1) Y= §4(0).

Hence we have a contradiction. This contradiction shows that m[u™, x]ua**"-1=0 for
all x¢R,. Therefore, ;

(7 ‘ m?[u, x]u’t?™-H=0 for all x¢R,.
Now, for all x, y€R, (4), and (7) gives
nxt+=1x, ™) =mnxt"1 (x, w)u™t=mdu, x]atI"-H=0,
Replacing x by (x+1), in the last identity and applying Lemma 1, yields
nlx, u™)=0(n[u" x]=0) for all x¢R,
Thus
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nm(u, x|u™=n[u", x]=0 for all x¢R,
and hence
ndx! " [x, ul=n(mu, x]u+"1)=0 for all x¢R;

As an application to Lemma 1, we obtain
8) n?[x, u]=0 for all x€R;, and ueN'(R).
Next, let c€ Z(R;). Then for all x, y¢R;, we have
(et —c) x! [x", y]=(cx¥ [(cx)", y]—ex! %", y]=(ex) [(ex)", y]—c[y™ x]y*
=(exy((ex)", y1—[y™, (ex)]y*=0,
and hence
n(ctt"—c) x't"1[x, y]=0 for all x, yER,
If we replace x by (x+1), and using Lemma 1, we finally obtain
n(ct*"—c)[x, y]=0 for all x, yER,
which implies .
(c**"—o)x", yl=n(c"*"—c)[x, y]x"'=0 for all x, yER.

Therefore,

9) (ct*"—c)[x", y]=0 for all x, yER;
In particular, by (5), we get

(10) (yretm—y*)x", y]=0 for all x, yER;.

If n[x, y]#0, then (10) shows that (y*e+m—y*) in R; is a zero-divisor. Hence
(y*e+n—D+ _y) is also a zero-divisor in R;. Therefore, (8) implies

n?[x, yk¢tn—hH_y]=0 for all x, yER;
If n[x, y]=0, then the same holds trivially. Thus
(11) n?[x, yr@tn—l_y]=0 for all x, y€R.

Since each R, (i¢/) satisfies (11), the original ring R also satisfies (11). But R
has Q(n) property. Hence combining (11) and Lemma 2, we finally get

(¥/—¥)€Z(R) for all y€R, and j=(k(f+n—1)+1)>1.

Therefore, R is commutative by Theorem H.
(ii) Let m=1, and s>0. Then by (4) we have

nxt+ 1 (x, y]=[y, x]y* for all x, y€R.
Replacing x by x" in the above identity, gives
nx" =0 [x" y)=[y, x"] y* for all x, yER.
Following the proof of case (i), we can see that
1 (1— xk (=hen—1)) xt+0-1 [ y]=0 for all x, y€R.

If ueN'(R,), then we can easily prove n2a/**"—V[u, y]=0 for all y€R; Hence, [y, 1"
=0(nu""" [y, u]=0). Thus

\
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[y, @]y =nu'+""1[a, y]=0 for all y¢R,

By applying Lemma 1, we have N’ (R)=Z(R;) (see (8)). Next, if we proéeed as in
case (i), we can easily get (c**'—c)[y, x]=0 for all x, y€R, and c€¢ Z(R;). Following
the argument in the previous case, we see that

(¥t —y)e Z(R) for all y€R.

Therefore, by Theorem H, R is commutative provided s>0.
(iii) If m=1 and s=0, then (1) becomes

xt[x", y]+|x, ¥]=0 for all x, y€R.

Therefore, R is commutative by [11, Theorem].
(II) Next, we study the case n=1. Then (1) becomes
(12) xt[x, y]=[y™ x]y* for all x, y€R.

If m=0, then x’[x, y]=0, and hence [x, y]=0 for all x, y¢R. Therefore, R is com-
mutative. If m>1, then by the symmetry of the proof of case (I), we can easily
establish the commutativity of R

Next, let m=1 and s=0. Then £>0, and

xt[x, y]=|y, x] for all x, y¢cR.

Hence, R is commutative by T. P. Kezlan’ Theorem [11].
Finally, let m=1, and s>0 in (12). Then for any integer r, we can see that

(13) X x[x, yl=[y, x]y" for all x, y¢R.
Let x=e,, and y=e,5. Then x and y fail to satisfy the identity
(14) x![x, yl=[y, x]y* for all x, y€ER.

Therefore, by Theorem KB, we get C(R)=N(R). If u¢ N(R), then (13) gives
x"|x, ul]=[u, x]u™ for all x¢R, r>0 and s>0.

But since #¢ N(R), #*=0, foi sufficiently large r. Thus x™[x, #]=0 for all x¢R.
Replace x by (x+ 1), and apply Lemma 1, to get [x, #]=0 for all x¢R, that is u¢ Z(R).
Therefore,
(15) CR)YSN(R) = Z(R).
Now, let d=(2*'—2)>1, for s>0. Then for all x, y¢R, (14) gives

dly, x|y =21 =2)y, x]y°'=[(2y), x(2y)’'—2[y, ] ¥*

=[(2y), x)2y)'—x'[x, (29)]=0.

Therefore, d[y, x] =0 for all x, y€R, and hence [y, x¥=dx? [y, x]=0 for all x
YE€R. Thus '

(16) x¢Z(R) for all x¢R.
By (14) and (15), we have x‘[x, y]+ y°[x, y]=0, and hence
(17) (x'+y)|x, y]=0 for all x, y¢€R.

Represent R as a subdirect sum of a family {R |2 ¢ A} of subdirectly irreducible rings
which are homomorphic images of R. Clearly, each R, has 1, and satisfies (14), (16)
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\
and (17). It is our aim to show that each zero-divisor in R, is central. For arbitrary
X€Ry and b€ N'(Ry), we get from (13) and (17) the result that

(X,df - bd-")[x, b] =0= [x' b](xdt e bds).

If [x, b]=0, then b4 and (x%+0b6%) are central zero-divisors of Ry (see (16)). Let
S;4(0) be the heart' of R, that is, the intersection of all non-zero ideals. Thus

0)=S; (x¥+ b%)=S,x% + S,b% = S, x%=(0).
Therefore, we have a contradiction. Hence [x, 8]=0 for all x¢€ Ry, and hence
(18) N' (RS Z(R»).
Let ¢;€¢ Z(R)). Then, we can prove that
(e5t'—ey)lx, y]=0 for all x, y€Rs

By following the argument given in case (I), the last identity and (16) forces that
(x#*1—x) is a zero-divisor. Hence, by (18), we get

(19) (x#H1—x)€ Z(Ry) for all x€R;.
Thus the original ring R satisfies (19). Therefore,
(x*H1—x) e Z(R) for all x¢R,

which implies commutativity of R by Theorem AH. This completes the proof.
In Theorem 1 if the property Q(n) is replaced by n and m are relatively prime
positive integers, then R must be commutative. Indeed, we have the following result:
Theorem 2. Let n>1, m>1, s, and t be fixed non-negative integers. Suppose
that R is a left (resp. right) s-unital ring satisfying the polynomial identity (1). Then
R is commutative provided that n and m are relatively prime.

Proo#f. According to Lemma 6 and [9, Proposition 1], we prove the theorem for R
with unity 1. Let #>1 and m>1. By following the same argument given in the proof
of Theorem 1 (see case (I)), we can prove that

nla?t, y]=0=m[a?}, y] for all y¢R, and a¢ N(R).

But n and m are relatively prime. Hence Lemma 5, yields [a?), y]=0, for all y€R.
Thus we have a contradiction (¢>1, see (2)). Therefore, N(R)=Z(R).

Next, let x=e,, and y=e,;, Then x and y fail to satisfy (1). In view of Theorem
KB, and the above argument, we conclude that

(20) CRIEN(R)ZZ(R).
By following the proof of case (I) in Theorem 1 (see (5))'along with (20), we prove
1) x*€ Z(R) for all x¢R.

Furthermore, we obtain
[x7, u]=0=[x™, u] for x¢R and u¢N' (R).
Since n and m are relatively prime, Lemma 4, gives [x, u]=0 for all x¢R and hence
N' (R Z(R).
As we have in the proof of Theorem 1, we get
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n(ct*"—c)x, y]=0 for all x, y¢R and c€ Z(R).
A variation of the argument yields
m(c"*t"—c)[x, y]=0 for all x, y€¢R and c€¢Z(R).
Now, since n and m are relatively prime, Lemma 5 shows that
(c'+"—c¢)[x, y]=0 for all x, y¢R and c¢ Z(R).
By (21), if y*¢ Z(R), then
(yketm—yk)x, v]=0 for all x, yeR.
Next, one can proceed exactly as in the proof of Theorem 1 to show that
(yRetn=D_y) e Z (R) for all x, y€R.

Therefore, R is commutative by Theorem A. This completes the proof.

Now, we establish the commutativity of a left (resp. right) s-unital ring under
different set of conditions:

Theorem 3. Let n>1 and m>1 be fixed relatively prime integers, and let s
and t be fixed non-negative integers. If R is a left (resp. right) s-unital ring satis-
fying both identities -

(22) xt[x" y]=[y" x}y* and x*![x™, y}=[y™ x]y° for all x, y€R,

then R is commutative.

Proof. According to Lemma 6 and Proposition 1 of [9], we prove the theorem for
R with unity 1. Following the proof of Theorem 1 (case (I)) and Theorem 2, we can
easily modify the proof to show that

C(R)IEN(R)=Z(R),
under the present hypotheses. The argument of subdirectly irreducible rings can then

be carried out for both » and m, yielding integers j>1 and £>1 such that R satisfies
the identities

[x/—x, y™]=0 and [x*—x, y*|=0 for all x, y€R.
Let p(x)=(x/—x)*—(x/—x). Then
¥ 0=[p(x), y™|=miy™"[p(x), y] for all x, yER,
an
0=[p (x), y*]=ny"'[p(x), y] for all x, y€R.
The relative primeness of m and n yields
(23) v [p(x), y]=0 for all x, y¢R and r=max{m?—1, n?—1}.

Therefore, by applying Lemma 1, we get p(x)€¢Z(R). Since p(x)=x—x%q(x) with
¢ (x) having integral coefficients, then Theorem /7’ shows that R is commutative.

4, Some corollaries and examples. As a corollary of Theorem 1, we have the
following :

Corollary 1. Let n>0 and m (resp. m >0 and n) be fixed non-negative in-
tegers. Suppose a left (resp. right) s-unital ring R satisfies the polynomial identity

(24) [xy, x"—y™]=0 for all x, yeR.

If further, R has the property Q(n), then R is commutative.
Proof. Actually, R satisfies the polynomial identity
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x [x" yl=[y", x]y for all x, yER.

Hence, the assertion is clear, by Theorem 1.

Now, replacing the property Q(n) by n and m are relatively prime positive integers
yields the following corollary of Theorem 2.

Corollary 2. Let m>1 and n>1 be fixed integers. Suppose a left (resp.,
right) s-unital ring R satisfies the polynomial identity (24). If n and m are relatively
vrime, then R is commutative. :

Corollary 3. Let k>1 be a fixed integer. If R is a left (resp., right) s-unital
ring satisfying the polynomial identities

xky —yxk=ykx—xy* for all x, y¢R and k=n, k=n+1,

then R is.commutative.
Proof. We notice that R satisfies the polynomial identities

%", yl=[y", x] and [x"*, y]=[y"*, x] for all x, y€R.

Therefore, R is commutative, by Theorem 3.

Corollary 4. Let R be a left (resp., right) s-unital ring and let n>1 be a
fixed integer. If R*, the additive group of R, has the property Q(n), and R satis-
fies the identity

x"y—yx"=y"x—xy" for all x, yER,

then R is commutative.
Proof. Actually, R satisfies

[x", yl=[y", x] for all x, y€R.

Hence, R is commutative, by Theorem 1.
Example 1 ([12, Remark]). Let K be a field. Then, the non-commutative ring

R~y o)

has a right identity element and satisfies the polynomial identity x[x, y]=0 for all x,
yﬁR. Hence, in case m=0 and n>0, Theorem 1 need not be true for right s-unital
rings.

The hypothesis of R to be a left (right) s-unital ring or the existence of a unity
element 1, in R is not superfluous in Theorem 1. This is shown by the following
Harmanci’s examples [6].

Example 2. Let

010 001 000
A1= 000' Bl= Ooo’and Cl= 001'
- 000 000 000

be elements of the ring of all 3X3 matrices over Z,, the ring of integers mod 2. If

R is the subring generated by the matrices A,, B,, and C,, then for each integer n=1

and x, yeR, [x", y]=[y", x] holds. However, R is not commutative.
Example 3. Let

000 000 000
Ay= 000) By=(000) and ¢,={001]},
010/ 100 000

3 Cepauxa, Ku. |
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I
be elements of the ring of all 3xX 3 matrices over Z, the ring of integers mod 2. If
R is the ring generated by the matrices A, B,, and C,, then for each integer n=1,
and all x, y€R, [x" y]=[y", x] is satisfied, but R is not commutative.

Remark. In Theorem 1, the restriction on Q(n) property is essential. To see
this, we consider Example 2 and use the Dorroh construction (with the ring of integers
mod 2) to get a ring R with unity 1. This ring R satisfies [x?, y]=[y? x|, for all x,
YER, and is not commutative (see [4, Remark]).

5. Groups. Finally, a close look to the symmetric group Sy we find that S, satis-
fies the identity

x8[x8, y]=[y8, x]y® for all x, y€Ss,

but S, is not an abelian group. If Gis any group satisfying the polynomial identity (1),
then it is interesting to study commutativity of G under certain constraints.
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