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NON-EXISTENCE OF PROPER SEMI-INVARIANT SUBMANIFOLDS OF AN
ALMOST 7-PARACONTACT RIEMANNIAN MANIFOLD OF P-SASAKIAN TYPE

MUKUT MANI TRIPATHI

The main objective of the paper is to prove that an almost r-paracontact Riemannian manifold
of P-Sasakian type does not admit any proper semi-invariant submanifold.

Introduction. Recently, in [1], semi-invariant submanifolds of a Sasakian manifold
have been defined and studied. It has been shown that a Sasakian manifold always
admits a proper semi-invariant submanifold [1]. Subsequently, in [5], it was proved
that a Para-Sasakian manifold [4] does not admit any proper semi-invariant submanifold.
In [2), a generalization of a Para-Sasakian manifold [4] called an almost r-paracontact
Riemannian manifold of P-Sasakian type has been defined and studied. In this paper,
we mainly investigate the problem analogous to that in [1] and [5] and prove that
there does not exist any proper semi-invariant submanifold of an almost r-paracontact
Riemannian manifold of P-Sasakian type. Some interesting results concerning integrabi-
lity of the distributions which arise naturally on the semi-invariant submanifold have
also been established.

Note. Throughout this paper (i) the term almost r-paracontact Riemannian shall be
abbreviated to al. r-p.c.R,, and (ii) the indices a and B will run over 1,...7.

1. Preliminaries. Let M be an al.r-p.c.R. manifold [2] with structure (¢, &, n° &)
where ¢ is a (1, 1) tensor  field, {&.} are r vector fields, {n°} are r l-forms and g is

an associated Riemannian metric on M. These tensor fields are related by [2]

(L1) ¢*=/—0"®) & N"(E)p=3, 9(Ca)=0, n* 0 0=0,
(12) o X o ¥)=gX, ¥)=En{(X)n(¥), &Ca X)=nX),
(1.3) O(X, Y)=g(oX)Y)= g(X, ¢ Y)=0(Y, X),

(1.4) (vx ®XY, Z)=g((vx 9)Y Z),

for arbitrary vector fields X and ¥ tangent to M, where vy is the Riemannian con-
nection of M. L

Let M be a submanifold of M. Let the induced metric on M also be denoted
by g Then the Gauss and Weingarten formulae are given by
(15) Vi Y=yx Y+h(X, Y),
(16) =Sl i

respectively, for all vector fields X and Y tangent to M and for each vector field
N normal to M, where y is the induced Riemannian connection on M, & is the second
fundamental form of the immersion,and Ay X and y§ NV are tangential and normal parts

of yxN. From (1.8) and (1.9) it follows that
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(1.7) a(k(X, 1) N)=g(Ax X, Y).

A submanifold M of an al.r-p.c. R. manifold M is called a semi-invariant subma-
nifold of M if the following conditions are satisfied [6]:

(@) TM=D @ D+ @ A, where A is the r-dimensional distribution spanned by the
structure vector fields &,,..., & and D, D! are differentiable distributions on M;

(b) the distribution D is invariant by o, that is ¢(D,)= D. for each x¢M;

(c) the distribution D' is anti-invariant by ¢, that is (D)) = T, M*for each x¢M,
where 7,ML is the normal space to M at the point x.

From the conditions (a), (b) and (c) it follows that the distributions D, D+ and A
are mutually orthogonal. If both the distributions D-and D' are non-zero, then the semi-s
invariant submanifold is called a proper semi-invariant submanifold. For any vector
bundle /7 on M [resp. M] we denote by I'(/) the module of all differentiable section
of H on a neighbourhood coordinates on M [resp., M].

Next, we recall some special classes of an al. r-p.” ¢. R. manifold. An al r-p. c. R
manifold M with structure (o, &, n¢%, g) is said to be [2]

(i) of s-paracontact type ii

(1.8) O X=Vx&u: a=1,...,7;
(ii) of P-Sasakian type if it is of s-paracontact type and

(19) @Axo)Y, 2)= i X, Z)—En (A 2))—Z (Z)gX, H—Zn(X)m(Y)],

(iii) of SP-Sasakian type if it is of s-paracontact type and
(1.10) (X, V)=elg(X, V)=Zn(Xm(V)]; e=1,

for any vector fields X, ¥ and Z on M.

2. Non-existence of proper semi-invariant submanifolds. We first prove
a lemma.

Lemma 2.1. On an al.r-p.c.R manifold M of s-paracontact type, the distribu-
tion T determined by n°, s is involutive.

Proof.Let X, Y¢I(T). Here n%(X)=0, n%(¥)=0 and consequently in view of (1.2),,
(1.8) and (1.3), it follows that n*(|X, ¥])=0, which completes the proof.

The above lemma provides the proof of the following

Theorem 2.1. The distribution D@ DX, of a semi-invariant submanifold of
an al.r-p.c. R. manifold of s-paracontact type, is always integrable.

Now we prove the main theorem of this paper.

Theorem 22. For a semi-invariant submanifold M of an al.r-p.c.R. mani-
fold M of P-Sasakian type, dim D\ =0. Consequently, an al.r-p.c.R manifold M of
P-Sasakian type does not admit any proper semi-invariant submanifold. :

Proof. Let X, Y¢I'DL). Hence ¢X, Y ¢I(TM') and in view of (1.7), (1.5), (1.3),
(1.4), (1.9) and (1.6), it follows that

&(Aox Y, Z)=gh(Y, Z)oX)=gh(Z, Y)0X)=g(vzY, 0X)
=808z Y), X)=g(vVA9Y)—(vVz9)Y, X)=g(vzAoY), X)

= —g(Aer Z, A)=g(—Aer X, 2); ZET(TM),
which implies that
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2.1) AoxY+ Aoy X=0; X, YeI(DL).
Now taking account of (1.2), (1.6), and (1.8), we get

n%(Aer X)= —g(%;(tpY). Ea)=2(0Y, vx L) =g(0Y, 0X)=g(X, Y); X, YeT(DY).

Interchanging X and Y in this equation and then adding both the equations, in view
of (2.1) we have

28X, V)=1%AerX+Aex ¥)=0; X, Y ¢T(DY).

Hence dim D-=0. This completes the proof of the Theorem. >

Since on al.r-p.c. R. manifold of SP-Sasakian type is always of P-Sasakian type [2],
we immediately have the following

Corollary 21. An al.r-p.c.R. manifold of SP-Sasakian type does not admit
any proper semi-invariant submanifold.

Theorem 2.1 and Theorem 2.2 lead to

Theorem 23. If M is a semi-invariant submanifold of an al.r-p.c.R manifold
of P-Sasakian type, then .

(i) the distribution D is integrable;

(ii) vx(eY)—vr(eX)=0[X, Y]; X, YeT(D).

(iii) 2(X, oY)=h(0X, Y);

Proof. Since in view of Theorem 2.2, dim DL =0; taking into account Theorem 2.1,
the distribution D becomes integrable. Next, in view of (1.4) and (1.9) it follows that

(2.2) 2((vx 0)Y —(¥r9)XZ=0; X, Yer(D),Z¢T(TM).
From (2.2), we get s ;
23) : Vx OV —(vr9)X=0; X, YeT(D).

Using (1.5) in (2.3), we have

0=(Vx 9)Y —(vr 9)X=vx(@Y)—vr(9X)—0|X, Y]+A(X, oY)—h(9X, ¥); X,Y¢T(D),

which on equating tangential and normal parts, yields (ii) and (iii) respectively.

Remark 2.1. In [3], various lemmas and theorems dealing with different proper-
ties of a semi-invariant submanifold of a P-Sasakian manifold have been proved. Since
this manifold is a special case of the manifold considered in this paper when r=1,
it does not admit any proper semi-invariant submanifold. In fact, in this case the distri-
bution D! is,always zero and the distribution D is always integrable. Finally let us note
that the results in [3] are redundant.
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