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OPTIMAL CONTROL OF NONLINEAR EVOLUTION EQUATIONS

NIKOLAOS S. PAPAGEORGIOU*

In this paper we establish the existence of optimal solutions for a large class of strongly nonli-
near evolution equations involving nonmonotone nonlinearities. An example of a nonlinear parabolic
optimal control system illustrates the applicability of our work.

1. Introduction. The study of optimal control problems of infinite dimensional
systems has attracted the interest of many mathematicians. This is exemplified by the
books of Lions [9] and Ahmed-Teo [3] which summarize most of the work done
in this area. So far, most of the attention was given to systems governed by linear
or semilinear dynamical equations. Selectively we mention the works of Lions [9],
[10], Zolezzi [14] and Ahmed-Teo [2]. More recently nonlinear optimal control
problems were considered by Ahmed [1], Hou [8]) and Cesari [6]. However, their
continuity and growth hypotheses on the nonlinear term are restrictive and do not
allow for the presence of nonmonctone nonlinearities. (See hypotheses A (1)—A (4) of
Hou [8] and hypotheses A,—A;, pp. 91-—92 of Cesari [6].) Our work goes beyond the
above papers and considers systems driven by a large class of strongly nonlinear evo-
lutions.

2 Preliminaries. The mathematical setting of our problem is the following. The
time horizon is 7=(0, b] and / is a separable Hilbert space. Let X be a subspace of
H carrying the structure of a separable, reflexive Banach space, which embeds conti-
nuously and densely into /. Identifying /7 with its dual (pivot space), we have that
X H-X* with all embeddings being continuous and dense. We will also assume that
they are compact. To have a concrete example in mind let Z be a bounded domain
in R” and m>1 a positive integer. Set X = H"(Z), H=[2(Z) and X*=Hy (Z)*~ H "™ (Z).
Then from the well-known Sobolev embedding theorem we have that /' (2)>L*Z)

wH-™(Z) with all embeddings being continuous, dense and compact. Such a triple of
spaces is usually known in the literature as a “Gelfand triple”. Other names used are “evo-
lution triple” or “spaces in normal position”. By (-, -) we will denote the duality bra-
ckets for the pair (X, X*) and by (-, -) the inner product in . The two are compa-
tible in the sense that (-, -) x.r —(+, *). Also by !l-/] (resp. | -], || -ly) we will denote
the norm of X (resp. of H, X*).

Let W(T)={x(-)€L2(X):x(-)¢L2(X¥)}, where the derivative in this definition
should be undarstood in the sense of vector valued distributions. Furnished with the inner
product (x, V)wr = (% ¥)xx, + (X V)xe, W(T) becomes a Hilbert space which is clearly
separable (being a closed subspace of the separable Hilbert space L?(X)xL?(X™)).
Furthermore, it is well known that W (T)-C(T, H) {y:T-—H continuous} continuo-
usly; i. e. every element of W(T7) after possible modification on a Lebesgue null set
is equal to a continuous function. Finally, since by hypothesis X/ compactly
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W (T)-~L2 (H) compactly. For details we refer to Zeidler [13], Chapter 23. The
confrol space will be modelled by a separable reflexive Banach space Y.

By Py, (Y) we will denote the family of nonempty, closed, (convex) subsets of Y.
A multifunction G: T—P,(Y) is said to be measurable if GrG={(¢, y)¢T XY : ye¢G(t)}
€B(T<Y)=B(T)xB(Y) with B(T'xY) (resp. B(T), B(Y)) being the Borel o-field of
T <Y (resp. of T, Y).

Finally recall that an operator A: X—X* is said to be monotone if <Ax—Ax/,
x—x'>0 for all x, x’¢X and is said to be hemicontinuous if A—(A(x+Ly), 2) is
continuous on [0, 1] for all x, v, z¢ X (i. e. is weakly continuous along rays).

3. Existence theorem. 7/4e Lagrange optimal control problem wunder considera-
tion is the following:

J(x, 1) :Oj’:L(t, (MxYt), w(t)dt—inf=m l

st x@)+AE x(@B)+g(t x@)=B(tu(l) a. c-l "
x(0)=x,, u(t)eU(¢) a. e, u(-) measurable

We will need the following hypotheses on the data of our problem (¥):
H(A): A: TxX-»X* is an operator s. t.

(1) for every x¢X, t—A(¢, x) is measurable,

(2) for every t¢ T, x—A(t, x) is monotone and hemicontinuous,

(3) (A(t, x), x) ¢ (B)!| x |* a. e. with ¢, (-)€LT,

@) A x) |e=a()+b]| x| a e with a(-)eL’, b=0.

H(g): g: TxX—/H is a map s. t.

(1) for every x€.X, f—g(¢ x) is measurable,

(2) for every t¢ T, x—g(¢ x) is continuous and sequentially weakly continuous,

(3) for all xe X, (g(¢ x), x) =0 a, e,

4) |g(t, x)=a,(t)+0b,! x| a. e. with a,(-)¢L?, b, =0.

H(B): B¢L=(T, £ (Y, H))(Z (Y, H) is the Banach space of bounded linear operators
from Y into /).

H(U): U: T—Ps(Y) is a measurable multifunction s.t. U ()= W¢ Py, (Y) a. e.

H(L): Let £ be a separable Banach space with norm ' - 'z and let L: TXExXY—-R

=RU{+ =} be an integrand s.t.

(1) (¢, x, u)~L(t, x, u) is measurable,

(2) (x, u)—L(t, x. u) is lower semicontinuous (L. s. c.).

(3) u—L (¢ x, u) is convex,

4) D) —r(|x|e+|uN=L(t x, u) a. e. with @(-)e L, » =0.

H(M): M: L2(X)L2(E) is an operator s, t. for every sequence {x,}. 1 weakly con-
vergzent in W(T) to x, then {Mx,},-1 has a subsequence strongly convergent to Mx
in L2(E).

Note that given an admissible control z(-) (i. e. a measurable map u: 7—Y s. t.
u(t)eU(t) a. e.), there exists a trajectory x(-)¢ W(T) for system (*). This is a result
of Hirano [7). Hirano considered a time independent operator A, however it is easy
to check that his work extends easily to the time dependent case A(f, x) using hypo-
thesis H(A) above.

Now we are ready for our existence result. To avoid trivialities we will assume
that m< -o; i. e. there exists admissible “state-control” pair (x, #) s. t. J(x, u)< co.

Theorem 3.1: If hypotheses H(A), H(g), HWU), H(L), H(M) hold and x,¢H,
then problem (*) has a solution; i. e. there exists an admissible “state-control” pair
(x, w)e W(T)xL2(Y) s. t. J(x, u)=m.
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Proof: First we will establish some a priori bounds for the trajectories of (¥).
So let x ()¢ W(T) be such a trajectorv. We have:

(6 X (YA x(0). x(EY+(g(t, x(1), x@)=BBu@), x(t) a. e,
=8 x(O)Pr2, x(0) P=(BO)u(®), x(0) a e with o= ()]
(see hypotheses F(A) (3) and H(g) (3),
S X022 x() P € BORW [ xOF a. e

(Cauchy's inequality with ¢>0).

Let ¢ P2 2¢,, where p>0is suchthat |-|<p/ - | (sucha B>0 exists since X-+H
continuously). We have

d . B s
T3 x(t)? <5 B(t)u(t) ? a. e,

= x(O =2 wp|B12+ix0
’ 2¢, ' =

= x(t) <M, for all £¢T and with M, >0, independent of x(-).
Also if €=1/2, we have

) ~b 1 AT 3 N 1 0y 3
x(b)‘2+2clﬁt x(f) 2dt= 3 | W d(! | B(8) }!(Y'H)dtﬁ— D) Mib+ | X, 2,
= x xx) My for some M,>-0, independent of the trajectory x ().

Finally let n(-)€L?(X) and by ((-, -)), denote the duality brackets for the dual
pair (L?(X), L?(X¥)). We have:

(X (8, nEN+AR, x @), n(O)+(g(t, x(@) n@)=(BE @), 1) a e,

b

= ((x, M)’ [ A x(B)] W n(f dt+|f|h1g(1» x(#)!. n(t)‘rdt+0f’f B(t)u(t) | . n(f) | dt

(@b x )| M B @ st by | X o). 0 e +BIW LB ] e

with B>0 depending only on B >0 for which |-|[=B| - . Since n€L?(X) was arbitrary
we deduce that | x sxe=M, with M;>0 independent of the trajectory x(+). From
all the above estimates and the definition of the space W (7)), we deduce that there exists
M, >0 independent of the trajectory x(-) s. t. [ X ||wry=M,

Now, let {(x, #,)}a=1=W(T)xL2(Y) be a minimizing sequence of admissible
«state-control” pairs for (*); i. a. J(x, #,) ,m. From the previous a priori estimation,
we know that {x,},— is bounded in W(T). Since the latter is a separable Hilbert

space, by passing to a subsequence if necessary, we may assume that x,,-"—l>x in W(T).
But recall (sce for example Zeidler [13], p. 450) that WAT)-~L? (H) compactly. So

x,,—’—*x in L2(H). Also we may assume that u,,'l*ll in L?(Y) as n—co.

Let A(-), G(-) and B(-) be the Nemitsky operators corresponding to A(-, )
g(+, *) and B(-) respectively. We have:

((kn' Xp— x))o + ((‘4 ('\.n)' Xn— X))0+ ((G(X,,). X,,—*X))(, = ((Bun' Xn ‘x))O'

From the integration by parts formula for space W(7) (see Zeidler [13],
proposition 23.23, p. 422), we have
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(s Fpm o= [ <H0 (O (O, 5, (O>dt= ) 5, (0)—x(8) 2

= (K Xa— Do = (% Xy—2Dot | Xz (b)—x(b) 2
Since W(T)—~C (T, H) continuously, we have

(%, Xy X))o+ | X, (6)—x (5) 240 as -+ co.

= (X X,—x))o—0 as n—co.

Also note that ((Bu,, x,—x))y=((Btt, xX,—x)):u—0 (here ((-, -))zs, denotes the
inner product in the Hilbert space L2(f7)). Hence we have lim ((A (x,)+ G(X,) x,— X))o
=0. Invoking proposition 2, p. 603 of Hirano [7], we get

A(x)+G(x,)—A(x)+G(x) as n—oo in L2(X%).

Note that since x,—> x in W(7)=x,— x in L2(X¥). So if n(-)¢L2(X), we
have:
(X Mo+ (A(xa Mu+(G(x,), MYo= (Bt M)y
— (¢, Mo+ (A(x), Mo+ ((G(x), M=((B@), M)
Since n¢L2(X) is arbitrary, we deduce that
x+A(X)+G(x)=B(u) in L*(X*),
= x(O+ At x(t)+g(t, x(@)=B(t)u(t) a. e,
x(0)=x,.
Furthermore since u, ——u in L*(Y) from Theorem 3.1 of [12] we have u(¢)¢ U(f)
a. e.So (x, u) is an admissible “state-control” pair for (*¥).

Next from hypothesis H(M) and by passing to a subscquence if necessary, we
have

M(x,)—— M(x) in L3(E),

= M(x,)(t) — M(x){t) a. e. in E.
Because of hypothesis H(L), we can apply Theorem 2.1 of Balder [5], to get

J(x, u)=fL(t. (Mx)(2t), u(t))dt-=lim J(x,, u,)=m.

But since (x, u)¢ W(T)<L2(Y) is an admissible “state-control” pair, we must have
J(x, uy=m=(x, u) is the desired solution of (¥).
Q.E.D.

Remark. An interesting byproduct of the above proof is that the set of admis-
sible “state-control” pairs is weakly compact in W (7)>XL2(Y).

4. An example. In this section we illustrate the applicability of Theorem 3.1, with
an example of an optimal control problem of a nonlinear parabolic distributed pa-
rameter systen.

So let Z be a bounded domain in R” with smooth boundary TI'--dZ. The optimal
control system under consideration is the following:
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J(x, u)::(!llzf'L(t. z, n(x(¢, 2)), u(t, 2))dzdt—inf=m

s. t, 2282 I (—1)a|Dadult, 2, 0(x(t 2)) (*.
gt z, n(vc(t :)));c(t)zz(t 2)on TXZ

Dyx(t, 2) rar =0, lyl==m—1, x(0, 2)=x,(2), |u(t 2) =r(¢ 2) a e.

Here a -~ (ay, ..., a,) is an n-tuple of nonnegative integers (multi-index) a|=a,
+ -+ +a, (the “length” of the multl-index), De—Dg ... D, where Di:d%, , M(x)
={DPx: |B==m—1} and 0 (x)-—{D°x: |a/-——m}.

We will need the following hypotheses on the data of (**):
H(A),: Au: T < ZxR"m—>R(n,,— (';TZ)! )is a function s. t.

(1) (¢, 2)—~Au(t, 2, 0) is measurable,

(2) 9—»/1“ (¢, z, ) is continuous,

(3) |Au(t, 2, 0) —a(t, 2)+b(2)|0 a. e. with a(-, )eL2(TXZ),b()eL=(Z),
(4) Z (A (¢, 2, 0)—Au (¢, 2, 0))(0.—0,)=0,

(5) Z A (¢, 2z, 0)0y Ll(z) T 0 with ¢, (1)€EL=(2).

n +—’"_1
g 6T <Rt R (1ey = O EAD
(1) (¢, 2)—>g(t, 2z, m) is measurable,

(2) n—g(t, z, m) is contmuom

3z gt 2 mymp= 0,

(4) ‘g(t z n) =a,(t 2)+&(2) n! a. e with a, (-, YeL(TX2), by (-)€L(2).
H(c): c(-)eL=(T).
H(r): r(-, )EL=(T < 2).
H(L),:L:TXZx R"m1XR-R=R[){+ o} is an integrand s.t.

(1) (¢, 2, n, u)—L(t, u, M, u) is measurable,

(2) (n, u)—L(¢ 2, n. u) is lower semicontinuous (l. s. c.),

(3) u—L(t, z, m, u) is convex,

(4 @, 2)—r(2)(In|+lu)=L(t z,n,u)a.e. with @ (-, VLY (TXZ), h(-)€L3(Z).

Here X=Hm(Z), H=1*(Z) and X*- H="(Z). From the Sobolev embedding theo-
rem, we know that (X, /1, X*) is a Gelfand triple with all embeddings compact. Also

let Y=L12(2).
Consider the time varying Dirichlet form a (¢, x, y) corresponding to the elliptic

partial differential operator of our system; i. e.
a(t. x, y)= ;” z A (t, z, n(x(2)) Dy (2)dz, x, y e H™(Z).

Clearly from Fubini’s theorem, we see that £—a(f, x, y) is measurable. Also using
Cauchy’s inequality, we get

) is a function s. t.

la(t, x, y)"{u{-: | Aa () x g .|| D%y [p=(a(t)+b| x| ez 1Y gz,
with Ag (£)(+) being the Nemitsky (superposition) operator corresponding to the
function Ay (f, -, ©) and a(t)=a(t, )k b= 0()|
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So there exists a generally nonlinear operator A: T <X Hi (Z)~H " (Z)s. t.{ A(¢,
x), W=a(t, x, y). ,

Hence from the measurability of a(-, x, y), we deduce that {—A (¢ x) is weakly
measurable and since /=" (Z) is a separable Hilbert space from the Pettis measurabi-

lity theorem, we deduce that ¢—A (¢, x) is a measurable map. R
Also using hypothesis /(A), (4), we can easily check that for every ¢¢ 7, A(¢, -)
is monotone. Furthermore from hypothesis /7 (A4), (5) we get that

(AL, x), vv=cllx! H,,,(z)
with ¢== | ¢(+) . Finally let x,,*s*x in Ao (Z). Then since by Krasnoselski’s
theorem A (¢)(-) is continuous, we have

A, (£)(x,) — Au(t)(x) in L2(Z) as n—ce.
But from Cauchy’s inequality, we have

At x)—At, 0= T 1A (@)(x)—Au (%) | ;=0 as n—soo
lal=m

= x—A (¢, x) is continuous, in particular then hemicontinuous.

So we see that /Al(t, x) mapping 7 X into X* satisfies hypothesis /H(A).

Next let g:T X H{'(Z)—L2(Z) be the Nemitsky operator corresponding to the
function g(¢, 2, n). From Krasnoselski’'s theorem we have that §(t, ) is continuous
while since H7(Z)-Hpr—'(Z) compactly (Sobolev’s embedding theorem; see for exam-

ple Zeidler [13]), we get that é(t, -) is also sequentially weakly continuous. Fur-
thermore for fixed x¢H7(Z), we have for every k¢ L2(2):

(gt x) h)xa =~ [t 2 n(x (@) ()dz

Invoking Fubini’s theorem we have that t—'(g(t Xx), h)ixz is measurable. Since
h€L2(Z) was arbitrary, we deduce that /—g(f, x) is weakly measurable and because
L?*(Z) is separable, once again from Pettis’ theorem we conclude that t—»g(t x) is
measurable. Also from hypothesis /(g), (3) we get that (g(t, x) A.)L2(Z) -0, while from
H(g), (4) we have that |g(t x) | L(z,\al(t)+bl, xll, m with @, (&)= a (¢, -)|aby

=(| b;(-) || = Hence we have checked that g(¢, x) going from TxX into H satisfies
hypothesns H ().

Let U()={veY=L2(2): |vla=|r(t, )|} & W={oeY=L2(2): ||V g = || 7|=}.
Clearly U(-) is measurable (since ¢—||/r(¢, -)|l. is a measurable functlon) and
W€ Pyy (Y). So we have satisfied hypothesxs H(U).

Next let £=L2(Z)" 1 and let L: T><E><Y—»R R {+ oo} be defined by Lt v,
u)=[,L(t,z, (v (2). u(2))dz, where n(y(2)= (Ve (@)gmt Let Ly: TXZXR"m—1 <R
—.R be Caratheodory integrands (i. e. measurable in (f, z), continuous in (n, u))s. t.

LyTL as k—co and @, 2)—r(2)(|n| +|u|)=L,(¢ 2, n, u)k. Such a sequence
exxsts by Lemma 2, p. 535 of Balder [4]. Set Z,(t, v, u) J’L,(t 2, n(y(2)), u(z))dz-

Clearly for each k=1, L,(-, -, -) is a Caratheodory map (i. e. measurable in ¢, con-
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tinuous in (y, «)), thus it is jointly measurable. Furthermore from the monotone con-
vergence theorem we have that L, ! I as k— -, hence L is measurable too. In ad-
dition using Fatou's lemma we can check that L(t -, -)is l. s c. and is also convex
in u. So we have satisfied hypothesis H(L). Let x,=x,(-)€L3(Z2).

Now let M: [2(T, H (Z))—L3(T, L2(2)" ") be defined by (Mx)(t, -)=n(x(t, -))-

Since H*(Z)~L? (Z) compactly for 1-<k=m, we have that L*(T, HE(Z))o- L2 (T,
L*(Z)) compactly for 1-<k=m (see Zeidler [I3] p. 450) and so we deduce that
M () satisiies hypothesis H (M).

Therefore system (**) admits the following equivalent abstract form:

{J(x, 1) = f’[ (t, (Mx)(t), a(t))dt —inf=m ]|
Vst X(H+ At x (@) + g x(O)=cOu(t) a e.f (™).
| x(0)=x,

[ u(£)eU(t) a e and u(-) is measurable |

This has the form of problem (**) and we have checked above that satisfies all
the hypotheses of theorem 3.1. So applying that theorem we get:

Theorem 4.1. If hypotheses H(A), H(g, H(c). H(r) and (L), hold and
xo(:)€L2(Z), then there exists admissible “state-control” pair (x, u)¢L*(T, HJ(Z))

NC(T,L2(2)) < L*(T X Z)and %’—:«-GL?(T. H"™(2)) s. t. J(x, u)=m.
Remark. Also using the compactness theorem of Nagy [11], we can say that the
set of trajectories of (**) is compact in C (7, L*(Z)).
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