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LIMIT THEOREMS FOR MULTITYPE BELLMAN-HARRIS BRANCHING
PROCESSES WITH STATE DEPENDENT IMMIGRATION

MARUSYA N. SLAVTCHOVA

In the non-critical cases a multitype age-dependent branching process allowing immigration only
in the state zero is studied. The asymptotic behaviour of the first tiwo moments is obtained and limit

theorems are also proved.

1. Introduction. A multitype branching process is a mathematical description of th
growth of a population consisting of a finite number of types of individuals who pro
duce offspring according stochastic laws. The notions of type and offspring may take
various forms, depending on the application. For instance, the types in biological mo-
dels are the different genotypes, in physics — the electrons and photons producing in
cosmic-ray cascades, etc.

Multitype branching processes are investigated in details in the monographs [1],
[7] and [10]. Foster [3] and Pakes [8, 9] considered a modification of the Galton-
Watson processes with one type of particles, allowing immigration whenever the num-
ber of particles is zero. The continuous-time analogue of this process was studied by
Yamazato [12].

A multitype age-dependent process with state-dependent immigration and m >1
types of particles is investigated by Mitov [6] in the critical case. The present paper
is closely connected with [11] and [13], where the Bellman-Harris branching processes
with state-dependent immigration and one type of particles are studied and limit theo-
rems are proved in the non-critical cases. Here we establish the asymptotic results
for the first two factorial moments and limit theorems in the non-critical cases.

2. Definition and equations. The prototype of the branching process to be studied
in this paper is the model of the Bellman-Harris branching process with state-depen-
dent immigration defined in [5] and [6].

Denote by N’ the Euclidean space of all r-dimensional vectors with non-negative
integer-valued components, i. e. N'={a:a - (a,,..., @), @,¢N, a,=0}

We use also the following notations

(X, =X+ -+ XY XY=(X Y100 XV
St =51sP ... SV,

Let us consider an age-dependent branching process with types Ty ..., T, of
particles modified by immigration of new particles at the state zero.
Definition. Let us have on the probability space (Q, F, P) three indepen-

dent sets:
1) X {X, i -1} are independent, identically distributed (. i. d.) random wvariab-

les with distribution function K (t)=P{X,<t}, K(0*)=0;
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Limit theorems for multitvpe Bellman-Harris branching processes with ... 145

2) Y={¥V,=(Y\. ..., Y}, i=1} are i i d. random vectors with non-negative
integer-valued components and multidimensional probability generating function (p.gf.)

f(o)=Es"—E{s)" ... 7, F@)=0:

3) Z={iZjy )= (Z), @), - s Z () i j=1, k=1, ..., 1, t=0} are iid. Bel-
Iman-Harris branching processes with 7 types of particles. The lifetime of a type i par-
ticle is a random variable, with distribution G (¢#), G,(0")=0, i=1, ..., r and G(¢)
=(Gy (), - .., G,(t)). The reproduction behaviour is governed by r-dimesional p.g.f.
h(8)=(AV(S), ..., A7 (S)).

The component Z{™)(¢) may be interpreted as the number of particles of type

Tm, m—1, ..., r in the Bellman-Harris branching process with r types of particles,
initiated with one particle of type T, k=1, ..., r

Then Z, (£)=Z0 (). ..., ZO(#), ¢ -0, i=1, where
;¥

@.1) Z0()=% EZD. (&), j=1,....r
k=1 =1

ilk

are ii.d. Bellman-Harris branching processes starting with a random number ¥,==0 of
ancestors.

Let t; be the life-period of Z;(¢), i. e.
(2.2) ,=inf{t: Z,(¢)=0, t>0}.

Observe that U,=tn+Xn, n>=1 are iid. random variables which form the rene-
wal process S,=0, S,,=‘_2"lU,~ and

(2.3) N(t)=max {n=0: S,<t}, £=0.

Then Bellman-Harris branching processes with state-dependent immigration and r
types of particles can be defined as follows

(2.4) Z()=Znoy1 (E—E) V2 <

where &, =Sy +Xnw+1. )
Comment. The Foster-Pakes model follows from (2.4) with r=1 and

, t=1, 0, t=0,
G(t):{l, t>1, K(t)z{l, t>0.
Also, from (2.4) with r=1,
0, £=0, 0, =0,

Gm:{l—e—”. t>0, K(t):{l, t>0,

we obtain the Yamazato process.
Further, we shall use the following notations:

F(t, 8§)=(FO(t, s), ..., FO(i, §), FO(O, 8§)=s, k=1, ..., 1,
F (t, s)=Es%) = f(F(t, s)), # (0, 8)=f(s),
@ (t, §)=Es?0=E sz . 270}, (0, 5)=1,
R(t, §)=1—®(¢ s), Q(t s)=1-F (¢ 9).

10 Cn. Cepaunka, Ku. 2—3
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It is well known (see [10], p. 231) that F(¢, s) satisfies the following system of
integral equations
t
FO(t, $)=8,(1=Gy () + [AM (F (t—y, 8))dG, (),
0

F®(0, §)=s, k=1,2...,r

From (2.1) and (2.2) it follows that V (£)=P {r,<¢}-P{Z (0)=0}=Z (¢ 0) and
hence

@6)  LO=P{Us8- [V = dK W)=/ (F(t—y, O)dK(y). t=0,

(2.5)

Theorem 2.1. The p.gf. ®(¢,s) satisfies the following multidimensional integral
equation

(2.7) Dt §5)= 1—K(t)—L(t)+U}x7(t —v, 8)dK( y)+£'d>(t —y, §)dL (),

with initial condition ® (0, §)=1, where F (t, 8)=f(F(t, §)) and F(t, s)is the unique
solution of the system (2.5).
Theorem 22. The multidimensional p.g.f.
D( 1; 8), S)=E{sZsZ 0 Z(0)=0}

satisfies the equation

(2.8) ot T; 8, sg):l—K(t+r)+0f<b(t—u, T; 8, Sy)dL (1)
+jf[.9" (t+1—u, 83)—F (t+1—u, 0)] dK (4)

+6f<b(t+r—u, S,)dL (u)+j9’(t—u, ;8. §p) dK (1)

L

+g€.7"(t—-u, sl)(t f u<b(t+t—u—x; 8,)dV (x)dK (u),
t—u

with initial condition ®(0, t; 8, §,) =EsZO) = D(r, §,), where F(t, 1; 8, §,)
=E{sf0s1 40| Z,(0)=Y,}, F (0, t; 8, 8)=F (1, §3) and F (0, 0; 8, 83)=1(S,).
The proof of Theorem 2.1 follows by the same arguments as in Theorem 1 of [5
and the proof of Theorem 2.2 parallels that of the corresponding result for the one-
dimensional processes in [11].
Observe that (2.7) can be given in the following equivalent form

(2.9) R(t s)- Df/e(t—u, s)dL )+ D(t; s).
where
(2.10) Dt s)=jQ(t——u, §)dK (u).

3. Asymptotic behaviour of the moments. Denote the moments

aF® (¢,
A’ (O)=E {Zf?k (1)} = “'“o‘,(:*")‘ s=1
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*F™(t, ) |

E{Z(00 (O 2 (0= =5 5 loons i REL
B;’:} (#) = 92F™) (¢ )
E{Z0, (012, (-1} = (;" lon if k=L
M (H)=E{z0 (t)=2E9
k
_ R (¢t s) .
V E{Z(k’(t) Z(l) (t)— *ds-kb'sfl s=1y lf k:i:l,
t)= 2
Ny () E{Z(k\ BOIZO()—1] = 00,({3). lsm1, if =1,

as;,

where &, [, m=1, 2, ..., r and further we shall use the notations A(f)=|A%(#)|,
ME)=(M, (), ..., M, ().
Set

_ai)

(s #h%s) | v, ()
iJ = osl s=1y

i =
b/k“ 05,05, s=b V= 0s; s=b if =55 95, 5=

W [ xdG;(x), a =EX,=[xdK(x), ki, j=1,2, ..., r (=1,
v 0
M= my; |, p=My, ..., 1), v=(Vy, Vo «cv’ V,).

From (2.5) and (2.7) by differentiating and setting s=1 it follows that:

3.1) AL (1) =8,,(1—G, (£))+ 1’1 _zl my AL (t— ) dG, (),

t r r t r
(32) BL(&) ~[[ X X bl AF(t—w)AL(t — )| dG; (W) + [ = myB}, (t—w)]dG; (w),

i1 m=1

3.3) M, (&) = [ M, (¢ —u) dL(a)+ j{ % v,AL (t—u)) dK (),
0 =1

G4 M= 13 ¥ ] (—0) Af(e—u)] dK W)+ 1, v}, (-] dK @)

=

-

t
+ [Ny (t—u)dL @), j, ky l=1. ..., .
(]

It is well known (see [10}), that for the Bellman-Harris branching processes with
r>1 types of particles there is a following definition: the process is subcritical if the
Perron root p of the mean matrix M associated with A (s) is less than one, critical in
case p-1 and b= X vpbiwu*>0, where a=(', ..., ') and v=(v, ..., 7,) are

ij k=1
left and right eigenvectors of the matrix M, corresponding to p and supercritical when
p>1.

Also, there is an analog to the concept of a Malthusian parameter of a classical

age-dependent process. Let M‘.—_Ilmiu?e—“'dGi t) |l.
75

The Malthusian parameter is that number « (unique, if it exists), such that the
maximal eigenvalue of M* is one.
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In the supercritical case p>1, the Malthusian parameter « always exists, but in
the subcritical case the parameter may not exist. From now on it will be assumed
that there always exists a unique number, such that the maximal eigenvalue of M*
is one.

From now on it will be supposed that M is irreducible and regular.

Then M has the right and left eigenvectors, corresponding to p, such that Mu=pu,
oM=pv, (u, 1)=1, (u, v)=1.

It is known (see [10], p. 312), that for the subcritical and supercritical processes
hold

(3:5) Al(t)~AL exp {at), t—co,
where

o, Jeetan(i=G,w)da
(36) Au/= uf,'ou,‘—————r- ———

r
T M ik
ki1 ak“a"al

’

uy and v.; are the i-th and j-th components of the right and left eigenvectors respe-
ctively, corresponding to the Perron root pe of the matrix E—M* and M,

=My, g e—d@, (u).

In the subcritical case the processes Z,;,(¢) degenerate, i. e. FO(f, 0) 11, £— oo,

i=1, 2, ..., r (see [10], Ch. VI, Theorem 32, p. 238). Hence V(0)=L(0)=0 and
V(o)=L (0)=1.
For the extinction probability g=(g, ¢» ..., ¢,) in the supercritical case (see

[10], p. 238) there exists &, such that
gr=limP{Z;,(£)=0}=1lim F® (¢, 0)< 1,
t—o0 t—00

i.e. g<l.
Therefore V(£)—f(q), t—oo. V (0)=P{Z,(0)=0}=f(0)=0 and Ly=L(=)=£(q).
From (2.10) with =0 it follows that limD (¢, 0)=1—f(g). Then from equation

t=00
(2.9) with s=0 we obtain (see [2], Section XL6)

lim D (¢, 0)

i .
}l_r.{ll?(t, 0)="-"5-1

In this section we shall investigate the asymptotic behavior of the first two facto-
rial moments in the subcritical (p<1) and supercritical (p>1) cases and of the mo-
ment E{Z(f)Z(t+7)} in the supercritical case. In the critical case a limit theorem is
proved by Mitov [6].

Theorem 3.1. If the process Z () is subcritical and a<co, V<o, K(t), L),
G;(t), i=1, ..., r are non-lattice, then there exists

=1

I[ E,v‘,A’," ()] du
lim M, ()= —"—"———

t—00

where vy= fo [1—L(#)dt and a<O0 is the Malthusian parameter.
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Proof. From equation (3.3) we have
¢
(37 My (&)= My(t—u)dL (@) + U, (8),
t r
where U, (f)= [[ Zv,AL(t—u)]dK(u), k=1, ..., r.
0 i=1
On the other hand, it is hold
o o 7 t
(3.8) [Us@®dt= [l Zv, [ A, (¢—u)dK (a) at
0 =1

=?dK(u)°f°[£' VAL (t—u)| dt = Zlel v,AL (1)) du.
( a I=1 =

Now, from (3.5) and (3.6) we obtain
(39) | A @) du = [ eA} (@) e~

§Z§1 i _Te“"du ! 2.21:1/(1< 00,
0

Applying the basic renewal theorem (see [2], Ch. XL1) to the equation (3.7) and
using the relations (3.8)-(3.9) implies the theorem.

Denote L (£)=L (£)/L (==), so that L(+==)=1.

Theorem 3.2. If the functions K(t), G;(t), i=1,2, ..., r and L(t) are non-
lattice and the process Z(t) is supercritical, then

(3.10) lim M, (6) exp{—at}=M,,

where u>0 is the Malthusian parameter and

o Jerta @ Zv A
@3.11) M=t :

1- °fe—‘""aL ()
0

k=1,..., r
Proof. Leta= zr“"dl:(u) and L (u)= li"e—‘“‘df(x)/a. Applying the substitutions

M, (t)=aeM, (), Al(t)=eAl(t),

i, j,k=1,2,...,r,
from (3.3) we obtain

G . R 4 r .
(3.12) M,(t):co{ M, (t—u)dL (u) + (l/a){e*"{Ey,Ai(t-u)} dK (u),
k=1, ..., r, where c,=L,a<l.
On the other hand, using (3.5) and (3.6) we have
(3.13) lim Ay (6)= A, k, I=1, ..., 1,
{00

where Ay are defined by (3.6).
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Since
T"'gu” {E v Ak (t—u)} dK () <T€“‘”dK (u) {121 v, Au)< oo,
then using (3.13), we obtain

lim le‘“"’ ZvAk(t u)} dK (u)= {ZV,Auk}ff’ wdK(u)=A, k=1,...,r

t—00 0

Therefore by Lemma 4 (see [4], Ch. VI)
lim M, (£) =A,/(1—c,), k=1, ..., 1,
=0

which proves the theorem.

Denote
Ho= 7e—2““df ()< 1,
[
(319 Ly (&)= (/o) [ e~>edL (u)
. 3:" B D, fb,,,, exp { — 2au} A AT dG, (1)
B g
where Dj, . is the complementary minor of the (i, j}th element in Do, =|3,;

—m ,fe—?““dG ()|, As; are defined by (3.6), Guc— | |m,,j e"dG,(u) and «>0 is the

Malthu51an parameter.
Theorem 3.3. Under conditions of Theorem 3.2 and if n; < o<, bi, <o, i, j, k

=1, ..., r then
(3.15) lim N, (t)e~3“’=N,,,. k l=1,
f—00

where

fe z‘”‘dK(u)[Zv B,‘, Az Z n,A, A’,]
(3.16) Ny = Klliald ST ¥ = Eoivalivil
1- df e 2dL (u)

and Bl are defined by (3.14).
Proof. Applying the substitutions
N (8)= poe® Ny, (),
By (t)=e™ By (¢),
Ap(t)y=et A (t), kI, m=1,

in equation (3.4) we obtain

3.17) Ny (€)=co iN,, (t—u)dL, )+ S, (2),
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where
tor
Sk (t)=(1"l’*o){,!.{i§l\’.-3;1 (t—u)} e dK(u)

t r r —
-+-(1/p(,)g'{.}:I Az‘n‘-,Ai (t—nu) Al (t—u)} e=2=dK (u),
o1 =

Co— Lok, and p,, L, are introduced in (3.14).
It is known (see [10], p. 314) that for supercritical Bellman-Harris branching pro-
cesses with r>1 types of particles

(3.18) lim Bju(t) =B

where Bjy are defined by (3.14).
The relations (3.5), (3.6) and (3.18) show that as {--o

of[ g lv,.éi, (t—u)) e~ 2udK (u)—.ofe—%udk () }:l v, B,

t r r . . oo r r R
M2 E A (t—u) Al(t—u)] 2 dK ()~ [e>dK @[ X = ny AALl).
1 i=1 j=1

0 =1 j=

Therefore

{Z, v. B., + Z{. }:' n, AL al }D}e_zuudK(u)
lim Sy (f) ==t == T T g < e
t—00 Ho
Applying Lemma 4 (see [4], Ch. VI) to Equation (3.17), we obtain that lim Ny, (£)
f—r00

=Nul(1—Lgto), &, I=1, ..., 1.
The theorem is proved.
Denote
Ny (t, ©)=E{Z®(t) Z® (t+f)}=9??~,§—:;1%5:;‘f52—) ‘

’
{s=8:=1

FF™ (t, 1; 81, 8)|
08y ;085 ; si=5=1

By (t, V) =E{Zyj () Zipm (t+ D))=

kil m=1,...,r
It is well known (see [10), p. 154, Theorem 8) that for the supercritical Bellman-
Harris branching processes holds

E{Zijm () Z,)m (t+7)} = Biiexp {a (2t + 1)} [1 +0 (1))

where B, k, I, m=1, ..., r are defined by (3.14).
Theorem 3.4. Under the conditions of Theorem 3.3

(3.19) Nyt ©)= Ny (£, 7)ee @+ (1+0(1)

uniformly for =0, wheie Ny, k, l=1, ..., r are defined by (3.16).
Proof. From (2.8) by differentiating and setting §,=8;=1 we obtain

(3.20) Ny, (¢, )= th Ny (t —u, 1)dL (u)+£‘[ é‘v,Bj‘, (t—u, 1) dKu)
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x AL (E—u) Af(+7—u)| dK (@)

Jj=

t r
+ Iz
0 i=1
t t+t—u
4—(’1'[‘_51»',%15c (t—u))( jf M, (t+1—u—x)dV(x))dK (u).

Now applying the substitutions
Ny, (8, T)=Hoe® #+IN,, (¢, 1),
Bji(t, ©)=e" 0B (8, 1),
M, (t)= e M, (8),
in equation (3.20) we have

. t_ i
(3.21) Ny (2, t)=c,0fN,,, (t—u, v)ydL, (0)+S,, (¢ 1),

where ¢;=L,u, and

(322) Surlt, D=([IZ, £ mipdh =)l ¢+ 1—)] =K (1)
FUTE VBl (=1, )] e-5saK @)
+(1/1o) af[,él v, AL (t—u)](l:{_" e~ M, (¢ +1—1—x)dV (x)) e~ 24dK (w).

Let us denote

t r . i+ .
T (8, t):ofl?.?lv‘-A;; (t—u)](t [ M, (t+1—u—x)e**dV (x)) e~2“dK (u).
Using relations (3.5), (3.6), (3.10) and (3.11), we obtain

+T—u

1 t
[Tt | c,,{)fe‘“"( t_fu e~ dV(x))dK (1)

__\,jc,,,j e 24V (t+1—u)— V (t—u)| dK ()
<Cu [t:fte—z“"v (t+t1—u)dK (u)—O’f eV (t—u)dK (v)),

where c,,:lzlv,.}i‘,',ﬁd,>o, il=1-l0..r

t
Since limg‘e—2°"dK(u)<oo and lim V (¢)=£(¢), then lim J,, (¢, )0, uniformly for
f=00 {00 {=400

120) kn l::l, P £
Using relations (3.22), (3.5) and (3.6) and applying Theorems 3.1, 3.2 and 3.3, we

obtain
r r r ‘_, , o
{Zv, Bikl+‘,£' El"g/'q:n’q.lu}l.!e—hudl((")

i = T =g T oo
ltl—ronooS‘l (t) o M <
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From (3.21) using Lemma 4 (see [4], Ch. VI) we finally obtain (3.19), which com-
pletes the proof.
4. Limit theorems. Theorem 4.1. Suppose that the process Z(t) is subcritical,

< o, V< oo, a=[xdK(x)< o and G(&) i=1, ..., r, L(f) and K(t) are non-lat-
0

tice. Then
lim P{Z(t)—“p}:(bp, z q)p= 1,
f—00 B¢ N’

where

(4.1) o(s)=1-2, v0~:?[1—-L(t)]dt<o:,
and

(4.2) Q(s)=;]'Q(t, s)dt, s<l.

Proof. From equation (2.7) we have

(4.3) o, s):dfcp (t—u, 5)dL (@) +1(t, $)

where 1(¢, )=1—L(0)—k (6)+ {tf (t—a, 5)dK (4).
On the other hand,
I(t, §)= l—L(t)—jQ(t—u, §)dK ()= 1—L(¢)—D(, s).

It is well known (see [7], Theorem 6.1, p. 186) that there exists a vector ¢>0
such that
(4.4) N—F (@, s)<f (1) 1—F(t, s)|<cex,

where ¢=v¢ >0, «<0 is the Malthusian parameter.
Using (4.4), we obtain

D syari= !OT(}Q(t—u, s)dt)dK ()|
0
- sz(u);fQ(t—u, s\du=z;fQ(x. s)dxég?lZe“‘dx[<oo.

Applying the basic renewal theorem (see [2], Ch. XI. 4) to equation (4.3), we con-
clude that

Zl(t, §) dt vO—ZQ (¢, 8)dt

- Vo Vo

(4.5) lim® (¢, s)

{00

1 Qv?’ —0(s).
From (3.5), (3.6) and (4.4) it follows that
j(b(s){glzut, s)dtls;ZQ(x)dxisv! 1—s I;'A(t)dt<:-;,

where A(f)=| A;(?)].
Obviously, ®(s)—1 as s—1, which completes the theorem.
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Corollary 4.1. Under the conditions of Theorem 4.1

Tli“f v, AL (6] at
L 0D(s) D=1 O 3
EZk(~'~)——bs‘k S v T Ryl=1,...,r

Proof. From (4.1) and (4.2) by differentiating and using (3.8) we have
0Q (s) e 0f(s) | ! _ 7 T oA
= t4[12»_] Js, s:x"qk(t)]dt— JE‘\,A,,(t)dt.

:?Sk
Finally, we obtain

-
X [v Al (t)de

D (s) ;,L{' o P "
dS, J_,lr vo ’ - 9 o0 ey ’

-l

which proves the assertion.

Theorem 4.2. Under the conditions of Theorem 3.3, if a>0 is the Malthusian
parameter, then the process W(t)=Z(t)e * converges in mean square to a random
vector W>0 whose Laplace transform ¢ (A)=E{e—*V}, A=(r,, ..., X,) satisfies the
equation :

(46)  o(W)=Jo A )dL @+ [f(ririe=), ... v, (hem)) dK (0)—f(q),
where y;(0), i=1, ..., r satisfy the following system of integfal equations :
(47) Wi (0)= [A0 (y,(0 ), ..., y, (0~ “9)dG (), i=1, ..., r.

0

Proof. It is not difficult to show that
(4.8) E{WH (t+1)—WH ()R =Ny (t+1) e 2L M, (E41) e 200040
+Nyp(t) e 28+ M, (£) =20 —2e—«t+ON,, (¢, 1),
k=1, ..., r.

Now, applying Theorems 3.2, 3.3, 3.4 for the right side of (4.8) we obtain that
limE{W® (£+1)— W (£)}2-=0, uniformly for t>0, which is equivalent to the mean
t—00

square convergence to a random vector W=(W, ..., W,)>0.
From here it follows that

(4.9) lim® (¢ exp{—2r,e=}, ..., exp{—r,e P =0y ..., 1),
{00

where ¢ (b, ..., )= TE{e "), 2,50,i-1,..., r
i=1

It is known (see [1], p. 226) that under the conditions of the theorem we have
(4.10) Z,;4 () e=ot 2 Wy,

where v is the left eigenvector, corresponding to the maximal eigenvalue of the ma-
trix M and the random variable W has Laplace transforms ¢,(0)=E{exp(—0 W Z, (0)
=e,), l=1, ..., r which satisfy the system (4.7). _

Setting (s, ..., §,) = (exp{—Xre ¥}, ..., exp{—h,e *}) in equation (2.7), we
obtain
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(4.11) ®(t, exp{—he),..., exp{—he ) =1—K()—L(f)
4
+ (@ (t—u, exp{—re “W—De—au} . exp{—1e-ct—we—a})qL (i)
0
~1—ff(F(t~u, exp{—he~C-we-w . exp{—he "—e—ca})dK (u).
v

As t—oo from (4.11) using (4.9) and (4.10), we obtain (4.6), which proves the
theorem.

Denote W, (H)=Z;, (f)e * k=1, ..., r.

Theorem 4.3. Assume mndttlons of Theorem 3.3 hold and

(4.12) ; E{ Wi/ h(t)— WolR< -,

kl=1,...,r
Then lim Z(t)/e* = Wa. s.

t—

Proof. In the case %,(0)=0, i=1, ..., r it follows that Z(f)is a Bellman-Harris
process with r>1 types of particles and it is known (see Mode [7], p. 143) that (4.12)
is a sufficient condition for a.s. convergence.

For the Bellman-Harris process Z;(f) let § ,-=(§}(¢), ..., §7)(¢)) be the number

of particles which are born up to time # and §;,(f)= (&}._‘,}(t), ..., &7) be the number
of particles which arc dead up to time £

Denote S (¢) = }_‘. g(k)(t) k=1, ..., r,l=1,2, where N({) is defined in (2.3)

and the process N(f) |s mdependent from %,,(f), k=1, 2.

If there exists i¢{l, ..., r}, such that 2®(0)>0, then we have the representation
Z® () =8" (t)—SP (¢), k= 1,

Under the conditions of the theorem N (f)—»v¥ as. as £—<o and Ev¥=1/(1—L,)
< > (see Feller [2], Section XI.2).

On the other hand, we have

W =lim[ghe =], 1=1,2, k=1,..., 7 as.

(see Mode [7], p. 143).
Therefore
sj") (t) Ml

e"‘ i=

E,“’ (t)e-“’—»Z n®), a. s. as t—co, =1, 2,

for k=1, 2, .
Hence hm W(t)— W a. s. which completes the theorem.

| would hke to thank Dr Nickolay Yanev for some hints and assistance.
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