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MINIMALLITY OF THE GROUP AUTOHOMEOM (C)

D.GAMARNIK

ABSTRACT. The main results are the following:

Theorem 1. The group Autohomeom (I™) € N is a minimal topological group iff A = 1.

Theorem 2. The group Autohomeom (D"°) where D¢ is a Cantor cube with a countable
weight is minimal.

These results are partly an answer to the general question raised by Prodanov & Stojanov
(1984), Dierolf et.al. (1979) & (1977).

A HausdorfT topological group (G, 1) is called minimal, if no Hausdorff group topology
7 on G is strictly coarser than 7.

Let (G, 7) be a topological group and let N.(7) denote the set of all 7 -neighbourhoods
of the identity element e € G. Suppose we have an action a : G x X — X where X is a set
with a uniformity &. Then a is called quasibounded if for every P € U there exist Qp € U
and Up € N.(7) such that if (z,y) € Qp and g € Up then (g9z,g9y) € P. A Hausdorff group
topology 7 on the group Aut(K) of homeomorphisms of a compact set K is called quasibounded
if the natural action a : Aut(K) x K — K is quasibounded [5].

Our first step is to prove the following proposition:

Proposition. Let Aut(K) be the group of homeomorhisms of a compact set K. The
compact -open topology Ty is minimal in the class of all quasibounded topologies on Aut(K).

First we recall the following characteristic property of compacts.

Lemma 1. Let F be an ultrafilier on a set X and let ¢ be any mapping from X into
a compact set K. Then there erists one and only one point £ € K such that for each open set
O(Z) containing # we have = (0(Z)) € F. In other words,  is a limit point of ¢ under F.

Now suppose 7 a quasibounded topology on Aut(K) that is strictly coarser than the
compact open-topology 7y. It can easily be verified that if an action Aut(K) x K — K is
continuous from left, i.e. if the orbit maps Aut(K) — K given by g — gko (where ko € K)
are continuous, then 7 = r;. So we admit the existence of zo € K and Py € U (U -the
natural uniformity on K ) such that for every 4 € N.(r) there exists g, € U for which
(9%0,z0) ¢ Po. Consider a filter on the set N.(7) with the filter base {F(U)}uen,(r) Where
F(U) = {V € N.(7)|lv C U}. Let F be an ultrafilter containing this one. For each z € K we
consider the map from N,.(r) to K given by the rule: U — g,z. Let Z be a point defined as in
Lemma 1. Consider the mapping h : k — k where h(z) = Z.

Lemma 2. H is nontrivial homeomorphism of K.
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Proof. Suppose z,y € K are such that z # y and h(z) = h(y) = 2. Let P € U
and (z,y) ¢ P. We may choose Qp € U, Up € N.(r) from the definition of the quasi-
bounded topology and choose Q € U such that Q* C Qp. By the definition of A we have
{U € N.(7)|(guz,z) € Q} € F and {U € N.(7)|(9uy,2) € Q} € F. But only F(Up’) € F,
hence the intersection of these three sets is nonempty. Suppose Uj is an element of this in-
tersection. Then g,, € Uy C Up' and (gu,Z, gu,y) € Q* C Qp; but (z,y) ¢ P - which is a
contradiction.

Suppose y € K. Consider the mapping N.(r) — k given by U — g7'y and take
z = 7 as in Lemma 1. We prove that h(z) = y. Suppose P is any element of  and Qp € U,
Up € N.(7) are taken as above. Then from the definition of F we have {U € N.(7)|(95'y,z) €
Qp} € F. On the other hand F(Up) € F. For each U from the intersection of these sets we
obtain U C Up and (97'y,z) € Qp hence (y,94z) € P and {U € N.(7)|(guz,y) € P} € F.
This means y = h(z). We conclude that h is a bijection. Now we prove that if there exists a
pair (z,y) € Qp such that (h(z), h(y)) € P, then there exists neighbourhoods O,, O, of points
h(z) and h(y) such that for every t’ € O; and t” € O, (t',t"”) ¢ P. From the definition of h:

{U € N.(7)|guz € 01} € F and {U € N.(7)|guy € O2} € F.

Besides this we have F'(Up) € F. If Uy is an element of all these sets, then gy, € Up and
(guoZ, guoy) € P, but (z,y) € Qp. This contradiction proves that his continuous. Hence h is a
homeomorphism. For each U € N.(7)(gu,Z, Zo,) € Po. Hence h(zg) # zo and h #e. O

The next Lemma shows that the topology 7 is not Hausdorff.

Lemma 3. For every U € N.(7), h € U.

Proof. For every g € Aut(K) and P € U let P(¢’ € Aut(K)|Vz € K(g9z,¢'z) € P'.
It is well-known that {P(g) : P € U, g € Aut(K)} form a base for the compact-open topology
7 on Aut(U). In order to prove our statement it is enough to show that for every Up € N.(7)
and P € U, we have h € [P(::)]”U. Indeed, for any 4 € N.(7) we can find V € N.(),V? C

U,V=' = V. But 7 C 79, hence there exists P € U, P3(e) C V, hence [P3(e)]"'V Cc V-V C U.

Let Qp € U and Up € N,.(7) be chosen for P € U according to the definition of the
quasibounded topology. Suppose z € K and z’ = h~!(z). From the definition of h, A(z) =
{U € N.(7)|(guz’, z) € P} belongs to F. We can choose R € U, R C P such that if (t',t") € R,
then (h~1(t'), h=(t")) € Qp. Consider an R-net of K, i.e. a finite subset {zy,z2,...,z,} C K
such that for every z € K there exists an i, 1 < i < n such that (z,z;) € R. Suppose that
U €N’ ,A(z;)NF(UpNUp). Thus for any z € K for some i we obtain (h~(z), h=!(z;)) € Qp
and (guh~(z),9uh~'(z:)) € P. But R C P, hence (z,z;) € P and from U € A(z;) it follows that
(guh~1(z:),z:) € P. It is not difficult to see that (g h~'(z;),z;) € P3, hence g,h~! € P3(e).
Since g, € Uy, we have h € [P3(¢e)]~'U, and our proposition is proved. O

Theorem 1. Suppose I = [0,1] and n € N. The group Aut(I*, 1y) of homeomorphisms
of I™ with the compact-open topology to is minimal iff n = 1.

Proof. Let r be a group topology on Aut(I) strictly coarser than 7. From propo-
sition 1 we see that r is not quasibounded. Thus there exists ¢ > 0 such that for every pair
a = (n,U) € N x N,(r) there exists z,y, € I and g, € U such that |z, — ya| < 1/n,
but |gaZa — ga¥a| > C. On the set N x N,(r), which we denote by A, we consider an
ultrafilter F containing the filter base {F(a)}aens, where for ag € (n,,Us) € N we let
F(ag) = {(n,U) € N|n > no,U C Up}. We obtain four mappings from A to I given by
the rules: a — z,,0 — Yo, — gaZa, @ = gaYa for a = (n,U) € N. Let zy,22,z¢ and
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yo be points for these mappings specified as in Lemma 1. It is clear that z; = 2, = z and
|zo — yo| > c. Without loss of generality we may assume zo < yo. Let us take t;,t; € I with
zo < t; < t; < yo and fix a nontrivial homeomorphism § € Aut(I) which is trivial on the set
I\ (t,t3),1.e. ift <ty ort>tythen §(t)=1t.

Lemma 4. For every U € N.(7) we have { € U.

Proof. We will show that for every Uy € N.(7) and € > 0 we have § € UoO,(e)Us ",
where O,(e) = {g € Aut(I)|Vz € I, |gz — z| < €}. Since [0,1) and (t2, 1] are neighbourhoods of
zo and yo we obtain:

{a € N|gaza < t1} €F and {a € N|gaya > t2} € F

Let us choose ng € N such that 1/ny < ¢ and let us assume that ag = (no, Up). Because of
F(ag) € F there exists an a;(ny, U;) which belongs to all these sets; hence |za, —¥a,| < 1/n1 <
l/"o < &,9a, € Ul C (/0 Because 9a,%a, < 4 and 9a,Ya, > t; we obtain: g;}((‘h‘?)) -
(Zay, Yay) or 922 ((t1,2)) C (Vay, Za,)- Let us consider g7 '€ga, - Ift € (Za,,¥a,) Ort ¢ (ya,,:a,)
then (ga‘fgal)(t) = t. Hence gm‘fg.,l € O(e); but go, € Up hence § € UOO.(c)Uo But
{Oc(€)}e>0 is a base of neighbourhoods of the identity in the compact-open topology. We
conclude that the 7 -topology is not Hausdorff. O

Now let us prove the second part of our theorem for n > 1. Suppose F is a boundary
of I", and | - | is a natural norm in I"™. For ¢ > 0 define
Oc(e) = {g € Aut(I")|Vz € I"|gz — z|, |97 'z — z| < €}
Fe={z€I"|3y€Flz-y|<¢}
O.(e) = {g € Aut(I™)|Vz € I" \ F|gz — z|,|97 'z — z| < ¢}

Lemma 5. The family {O,(e)}e>0 is a neighbourhood base of the identity in some
group topology T that is strictly coarser than compact-open topology 7.

Proof. Note the following facts:
(1) For every €,,e2 > 0,0.,(c) né.,(e) ) 0.4(c) where § < min{e,¢€2}.
(i1) Suppose € > 0, § < /2 and g1,92 € Os(e). If z ¢ F,, then z ¢ Fs ie. |g1z — z| < § and
glz € Fo This means |g291z — goz| < &, i.e.|9201z — z| < €. The same reasoning shows that
lo97'95'z — z| < € if z ¢ F,, and we obtain 05(6)06(6) C O.(e).
(ii1) From the definition we have O 1(e) = O(e).

(iv)Ifg € o.(e) and ¢, = sup max{|gz — z|,|¢g”"
F,

zr —z|, then € < €. For €3 = € — ¢, we can
z¢F,
take § < €3 such that from |t — t”| < § it follows that |gt' — gt”| < €3 and |¢g~'t' —g " < g,.
For ¢’ € Os(e) and z ¢ F, we obtain z ¢ Fs and |¢’z — z| < §. Consequently, |gg'z — z| <
|gg z>gz|+|gz—z| < €. Besides this, from z ¢ F, it follows that |g"'z—z| < cand g™ 'z ¢ F,,,
i.e. gz € Fs. Then we get |g7'g~! —g'z| <6 < ez and |97 g~ 'z — z| < €2+ €, = €. Hence
90s(e) C Oc(e).
(v) Suppose € > 0 and go € Aut(I™). There exists § > 0 such that Fs C go(fe), and from
[t" = "] < & it follows that |got’ — got”| < €. If z ¢ F then gzo ¢ Fs. Thus for each g from
Oa(e) wc conclude that |ggoz goz| < 8, g~ g0z —goz| < &, and hence that |g;'ggoz —z| < €,
l95 "9 g0z — z| < € i.e. g5 Os(e)do C O, (e).
Suppose g # e. The set U = {z € I"|gz # z} is open in I". Hence U \ F # O. Suppose
ro € U\ F, € < |gzo — zo| and € < |zo — z| for every z € F. Then we have zo ¢ F, and
g € O,(e).This proves that 7 is a Hausdorff topology.
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Suppose a and b are two distinct points of F. It can easily be verified that for every
€ > 0 there exists g € O,(e) such that ga = b. Thus if &5 = |a—b|, the condition Oc(€) C Oc,(e)
does not hold for every e >0and 7 # 7. O

Let K = D" be a Cantor cube with a countable weight and a metric d and let 7 be a
Hausdorff topology on Aut(K) that is strictly coarser than the compact-open topology 7.

Lemma 6. For every U € N.(r) and z,y € K there exists § > 0 such that every
element g € Aut(K) that is trivial on K \ B(z,6) U B(y, 6) satisfiesg € U.

Proof. From Theorem 1 we know that the topology 7 is not quasibounded on Aut(K),
i.e. for each a = (n,U),n € N,U € N.(7) there exist z,,ya € U and go € Aut(K) such that
d(z4,Ya) < ga/n € U. But d(gaZa,ga¥a) > ¢ where c is a positive constant. Suppose F is
an ultrafilter containing the natural filter on the set {(n,U)|n € N,U € N.(r)} = N and that
21, 22, Zo, Yo are limits for the following mappings from N to K : a@ — Z4,a — Yo, @ — ga, Za
and a — ga,Ya. Then z; = z2 = z and d(zo,y,) > c.

First we shall prove this lemma for z = zg,y = yo. Suppose Uy € N.(7) and ¢ > 0
are fixed. It is enough to find a § > 0 such that every element ¢ € Aut(K) that it trivial on
K\ B(zo,8)U B(yo,8) belongs to V,(e)Uo Ve (e)Uo Ve (e). Suppose no € N and nl., < §. For zo, o
and ag = (ng, Up) we obtain:

{a € N|d(gaza,z0) <€} € F and {a € N|d(gaYa, %) < €} € F.

There exists a; = (ny, U;) which belongs to both these sets and F = (aq), i.e. ny 2> no,U; C
Up. Because d(gaZa,z0), d(gaVa¥o) < €, there exists a § € V,(e) such that g(ga,zs) = o
and §(9a,¥%a) = Yo. Let § = Jga, and let § > 0 be chosen such that if d(t',t"”) < §, then
d(g~'t’,3't") < §. Let us consider the element g € Aut(K) trivial on K \ B(zo, ) U B(yo, §).
From d~'zg = za,, § 'Y = Va,, we obtain §3~(B(zo,6)) C B(za, %) and §~'(B(w,6) C
B(Ya, §); but d(zaya,) < "l—‘ < "'—o < §, so there exists a ball B with diameter € such that
3~ Y(B(z0,8)) UG~ (B(y0,6)) C B. From the definition of g it follows that §='gg € V,(e). But
J = 394, € Ve(€e)Uo, which means that g € V,(e)UoV,(e)UoV,(e), what was to be proved.

Now suppose z,y € K and U € N,.(r). We can find go € Aut(K) such that gyo =
y,9z0 = z, and V € N,(r) such that g()Vgh,'l C U. Let € > 0 be chosen for zo,yo and V
as above. We can choose § > 0 such that d(t’,t") < & implies d(g; 't’, g5 't") < €. Suppose
g € Aut(K) is trivial on K \ B(z,8)U B(y, §); then g5 'ggo is trivial on K \ B(zo,¢)U B(yo, €),
ie. g;'990 €V and g € goVgy~ CU.

Theorem 2. The group Aut(D®°) is minimal.

Proof. Werepresent K = DX as a set of sequences (z1,Z2,...,Zp,...) containing only
zeros and units. For a = 0(a = 1) we define @ = 1 (@ = 0). Suppose z = (z1,...Z,,...) € K,
and define T = (Z,,z3,...2n,...). Let us consider A : K — K defined by A :z — 7 and let 7
be any topology strictly coarser than the compact-open topology 7 on Aut(K).

The following Lemma shows that r-topology is not Hausdorff which proves Theorem 2.

Lemma 7. For each U € N.(7) we have A € U.

Proof. Let Uy be any element of N,(7),U® C Up,U € N.(r) and choose £ > 0 so that
V2(e) C U. For € > 0 we can choose n € N such that 307 & < 1. Let A = {a),...,am} =
{z € K|zpn41 = zny2 = ... = 0} i.e. Aisa finite c-net in K, which consists of m = 2" elements.
Let W € N,.(7) be such that W™ C U and choose § > 0 so that the condition of Lemma 6 holds
for pairs (a1,@),...(am,@m) and W. Take n € N so that 337 v 5x < 6. Forevery i,1 <i<m,
we consider ¥; € Aut(K) defined by following rule: if coordinates of z coincide with a; or @;
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till N and particularly z,41 = Zn42 = ... = z5 = O, then ¢;(z) = T for all the other elements
ze€ K weput ¢j(z)=z. Theny; e Wand v = ¢, -...- ¥, E W™ C U.

On the set K we consider four subsets:
K, = {z € K|zp4+1 = 0 and there exists an i,n + 2 < i < N such that z; = 1},

Ky={z€K|ztp41 = Zpg2=...=zy =0},
K3 = {z € K|zn,41 = 1 and there exists an i,n +2 < i < N such that z; = 1},
K4:(2€K|t,,+1=z“+2=,_‘=:N=O}.

Let us consider the mappings:
p1: KHUKy - Ky ifz € Ky U Ko, then ¢1(2) =y, where y; = z; for 1 <i<n,yp41 =...=
yv =0, and yn4i = Tpp14i fori > 1,
w2 : K3z — K, if z € K3 then p3(z) =y, where y; = z; fori #n+ 1 and yo41 =0,
w3 : K4 — K3U K, if z € K4 then p3(z) = y, where y; = z; for 1 <i<n and yn414i = TN4+i
for i > 1.

We obtain ¢ = p3A¢p2,Ap; € Aut(K) and because the coordinates of the points for
i < n do not change it follows that ¢ € V,(e). Let us consider ¢~ '¢p(z).If z € K and z,41 = 0,
then it is not difficult to see that p1¥¢(z) = T, and if z,4; = 1, then p1¢¥p(z) = z. On the
other hand we have ¢y € V. (e)UV,(e) C U3.

Let @ be the element of Aut(K) such that if z € K then $(z) = z’, where z; = z; for
i#n+1andz,,, = Fnp1. Then ¢° € Va(e) and po = (pp)~ () € V2()UV(e) C U,
But from the definition of ¢q it follows that if z € K and z,4; = 1, then po(z) = 7; if
.Zn4+1 = 0, then po(z) = z. Finally we see that the composition (¢~ ¢p) € USU3 C Up; but
eolpYp)=A,ie. A€U;. B

Aknoledgement. Thanks are due to M. Megrelishvili and I. Koshiashvili for their
attention and help.
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