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AN OBLIQUE DERIVATIVE PROBLEM FOR SECOND ORDER
QUASILINEAR PARABOLIC OPERATORS II

D.K.PALAGACHEV

ABSTRACT. An oblique derivative boundary value problem for a class of quasilinear strictly
parabolic operators on a cylinder in R™*'is studied. It is assumed that the normal component of the
vector field | corresponding to the problem vanishes on some subvariety of codimension one of the
boundary and that ! is of "emergent” type. Existence and uniqueness results in Hélder spaces are
proved.

1. Introduction. The aim of the present paper is to study the quasilinear parabolic
equation Pu = 0 on a cylinder Q. More precisely, we shall be concerned with the existence
and uniqueness questions for the solution of this equation which satisfies a boundary condition
in terms of the directional derivative du/8l = 0 on the lateral boundary S of Q, and initial
condition u = ¢.

It is well known [1,2] that the initial-boundary value problem (IBVP) is regular if the
vector field [ is conormal to S. Moreover, under suitable conditions on the data there exists a
unique classical solution of the problem.

Our goal is to study the degenerate problem, i. e. the case when [ is tangent to S at
point of the set E C 5. The linear problem was treated by Egorov and Chiong [3] in Sobolev
spaces. It was proved that the solvability of IBVP depends on the way in which the normal
component of [ changes its sign in the positive direction along the integral curves of the field
I. This result is analogous to that in elliptic case [5,6]. In the author’s work [7] the case of
sign-preserving vector field | was considered for quasilinear operators. We have proved that the
above problem is well posed in Holder spaces in the sense that usual existence and uniqueness
theorems analogous to those for the Neumann problem are true. The basic assumption is that
the lengths of I-curves on E are finite. Further in [8] the linear problem in another situation
was solved: [ is of "emergent” type, i. e. the sign of I changes from minus to plus along the
I-curves in a neighbourhood of E, where E is a submanifold of S with codimgE = 1. In that
case, however, the IBVP as stated above is ill posed [3,8]. The dimension of the kernel of the
problem is infinite. To avoid this difficulty the extra boundary condition u = u is prescribed
on E.

In the present paper we aim at extending our results in order to to get a solvability
theorem for the quasilinear equations in the case of "emergent” field I. As in (7], we use
Winzell’s technique [5] for a global bound of the solution Holder norms, as well as the approach
of P. Popivanov and N.Kutev [6] in the treatment of elliptic equations. The nonemptiness of
E leads to a loss of regularity. Thus, the solution in general has one z-derivative and ”1/2”
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t-derivative less than in the regular case. That is why, it is natural to consider quasilinear
operators with coefficients depending on the unknown function only. Finally, let us note that
in our case E is a subvariety of S and codimsE = 1. The more complicated situation when E

is an arbitrary subset of S not containing l-curves of infinite length, can be treated in a similar
way.

2. Statement of the problem and main result. Let Q C R", n > 2, be a bounded
and smooth domain, 0 < T < 0o, Q := Q2 x (0,T], S := 8Q x (0, T]. On the lateral boundary s
of the cylinder Q a flat, smooth and unit vector field I(z,t) = (1M (z,t),...,1"(z,1),0) is defined
which can be decomposed into

I(z,t) = 7(z,t) + 7v(z,t).v(z)
where v(z) is the unit outward normal to Q and 7(z,t) is a tangential vector to S. Let
E :={(z,t)€S: 1(z,t) =0}, S*(S™) :={(z,t) €S : ¥(z,t) > 0(< 0)}.

Furthermore we impose the following assumptions

(1) the set E is a submanifold of S, codimsE = 1;
@) the vector field r points from S~ into S* on E
and 7 is strictly transversal to E.

Remark 2.1. Let us note that the above conditions imply that the set E N {t = to}
is non empty for every to € [0,7] and that the vector (0,...,0,1) is not normal to E at any
point (z,t) € E. For convenience we consider the case when E is a connected submanifold of
Sif n > 2 and E consists of two connected manifolds without common points, if n = 2. The
problem will be studied in the Holder spaces C%4/%(Q), (¢ > 0, g is non-integer) equipped with

the seminorms (-)(Qk), 0 < k < g, and the norm | - I(Q” (for the definitions see [1,2]).
Let us consider the following non-classical IBVP

Pu := a'(z,t)0%u/0z;0z; + b'(z,t,u)du/dz; + c(z,t,u) —u; =0 inQ
(3) lu:=1(z,t)0u/dz; =0 on S;
u(z,t) = p(z,t) on E; u(z,0) = ¢(z), z € Q.

We adopt the standard summation convention that repeated indices indicate summa-
tion from 1 to n and assume that

(4) {a"(z,t)€'¢F > A[¢)? (z,t) € Q, £ €R", A =const >0, a' = o't

a'l € Cl+°'(l+°‘)/2(a); bi,c € Cl+a,(l+a)/2(o X R);
(5)

i e CHe+2(F), e cre(tall 9o eCHe, 0<a< ;

(6) z.c(z,1,2) € coz? + b, (z,t,2) € Q xR, 0< co, bo = const.
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The main result is as follows

Theorem. Under the above assumptions problem (3) has a unique classical solution
in the space C*+*(2+2)/2(Q) for every p € C***2+3)/2(E) and ¢ € C3+%(0), satisfying
compatibility conditions up to order one on EN {t =0} and SN {t = 0} respectively.

Remark 2.2. 1. f € C*9/2(Q x R) if f(z,t,2) € C¥/*(Q x [-N, N]) for N > 0 and
we consider z as a (n + 1)-th spatial variable.

2. The data in (3) satisfy compatibility conditions up to order m on SN {t = 0} if

ok Jot* [l‘(z, t)u.-(z,t)] =0 k=0,1,...,m,

t=0
z € 90
where the derivatives in the left-hand side come from the equation Pu = 0 and the initial

condition u(z,0) = ¢(z) (see [2], p.363). In the same way, the data are compatible up to order
mon E U {t =0} (see [1], p.137) if for every point (z0,0) € EN {t = 0}

ok jot*[a(z,0)]| , _ ¢ = 8% /ot* p(2" 1)) 1=0, k=0,1,...,m

Iy, =Zp-1=0

»

where the functions with ” ~” are the corresponding functions in the new coordinates (Z,¢) in
which the set E has the form #, = #,_; = 0 near (zo,0) and the derivatives in the left are
obtained as above from the transformed equation and the initial condition.

3. Some preliminaries. For the sequel a comparison principle for quasilinear parabol-
ic operators will be proved. Consider Du = (8u/8z,,...,0u/0z,),

Ru := a"(z,t,u, Du)u;j + b(z,t,u, Du) — uq,
and let
a'(z,t,z,p)E'¢ > Al¢|? (z,t,z,p) EQ x RxR™, A = const >0, a" = a’*,
a* a¥ a¥ bbb, € CO(Q xR xR")

where the lower indices mean a differentiation with respect to the corresponding variables. We

denote : .
d((z,1), (2, 0)) = (Jz = ' + ]t - )"/

and

C*'(Q):={ueC’@Q): D;DIueC’@Q), 2r+181 <2}

Lemma 3.1. Assume that Q € C? and that u,v € C*Y(Q) satisfy Pu > Pv in
Q, u<vonE, lu=1IlvonS, u(z,0) <uv(z,0)forzr€Q. Thenu<vinQ.

Proof. Putting w := u — v we obtain
@ (2, )wi; + b (z,)wi + &z, )w—w, >0  inQ,

where the coefficients depend on the corresponding coefficients of R via the mean-value theorem.
Moreover w(z,t) < 0on E, lw=0on S and w(z,0) < 0, z € Q. The strong interior maximum
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principle implies that the function w(z,t) cannot attain a positive maximum in Q U E since
w(z,0) <0on Q, and w < 0 on E. If we suppose that w(z,t) attains a positive maximum at a
point (zo,to) € S*(S™) then lw(zo,to) > 0(< 0) by virtue of the boundary maximum principle
(1 is non-tangential to S on S* U S™), which contradicts to the boundary condition lw = 0.

To use Winzell’s technique for a global bound of the solution Holder norms, the inte-
gration along [-curves between subdomains of Q will be essential. In fact we need the following
result which corresponds to Proposition 3.3 in [5].

Lemma 3.2. There ezist an extension L of | in Q and a C*+*(2+2)/2 manifold N C Q
with a "lateral” boundary E U E’ such that

(i) L is strictly transversal to N';

(ii) Every integral curve of L through a point in N in either direction reaches S within
a parameter length less than a constant K > 0;

(iii) If Qp = {e*:(z,t) € Q: (z,t) EN, —g¢ < p < g} for p > 0, then {Q,} 1s an
increasing family and for each § > 0 there ezists a number § = 6(6) > 0, not depending on p,
such that d(Qp, Qx\Qp+s) > 0 whenever Qx # Qp+s;

(iv) d(E,Q\Qk) > do = const > 0.

Proof. The assertions (ii), (iii) and (iv) are clear in view of assumptions (1) and
(2) as well as of the fact that for a fixed p the map (z,t) — ePX(z,t) is a diffcomorphism
on N. The point (i) follows from the definitions of L and A'. We thus concentrate on the
construction of L and . Since 8Q € C3* there exists a neighbourhood I' of 9Q (see Appendix
in [4]) such that for every z € T there is a closest point y(z) € 89, y(z) € C***(I',R") and
dist (Q\T, 0Q) > do. Putting L(z,t) := l(y(z),t), ¥(z) := v(y(z)) for z € T, we define N as
the union of curves of length at most dy, originating in E and with tangent vector (—7). It is
evident that E’ = e~%7E. Finally, we extend L(z,t) in the whole of Q in a natural way.

The next local apriori estimate will be very important in our investigations. It is proved
in Proposition 2.1 in [7].

Proposition 3.3. Let W C Q be a domain in R**', U C W and J(U, Q\W)>6>0.
If u € C***(2+)/2(Q) then the following estimate is valid

(u)E}“a) < C((u)fwz_:? + (Cu)(w") +[u(-,0)],4 4 Wn(::o))

2 1
+C'(0) (lcu|o.w +2 (W + Z(u)‘#"’)
;=0 J=0
where L is a linear uniformly parabolic operator.

We will end with a variant of the interpolation inequality between Holder norms. Let
u € C¥9/2(Q) and let Q satisfy the uniform interior cone condition. Then there is a constant
C, independent of u, such that

™) wg? < c(1ug)) (1uhoa)

where ¢ € [0,1] and |ulo@ = (u)(qo). The proof is a simple consequence of Lemma 3.2, ch.2
in [2].
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4. Proof of the main result. The unicity of the solution of (3) follows from Lem-
ma 3.1.

The proof of the solvability of our problem will be carried out by means of the Leray-
Schauder theorem (Th.11.3 in [4]).

First of all, we reduce the problem (3) to a problem with zero initial data (see [2]).
Namely, we consider the tangential IBVP

aijuij + bi(z,t,u + 9”)“:‘ + bi(zltl u+ S’)S"-
(8) +e(z, t,u,ut @) —up = —ap;; in Q
lu=—-lponS; u=pu—ponkE; uz,0)=0, reQ

instead of (3). It is clear that if u € C?+*(2+2)/2(Q) solves (8) then the function u(z,t) + ¢(z)
is the desired solution of the original problem (3).
Let us define the Banach space

Crerl @) = {v € C1+a+2(@Q) : v(z,0)=0, z € Z)’}
and the non-linear operator

u- C;+a,(l+a)/2(0) - Cg+a,(2+a)/2(a)

in a standard way: for every v € C;+°'(l+°)/2(a) the image Uv is the uhique classical solution
of the linear IBVP

a'l(Uv)ij + b (z, t, v+ o) Uv)i — (Uv)e = —bi(z,t,v+ )i
—c(z,t,v+<p)—a‘j in Q
l(Uv) = —=lpon S; (Uv)=p—ponE; (Uv)(z,0)=0z€ Q.

The above problem is uniquely solvable because of our assumptions and the Theorem in
[8]. Moreover, the estimate for Lv (see the Theorem in [8]) claims that & maps bound-

ed sets in C;+°'(l+°)/2(a) into bounded sets in Cg+°'(2+°)/2(0) which means that U is a
compact operator from C;+°'(l+°)/ %(Q) into itself. There are no difficulties to obtain that

u: C;“"(H")“(a) — C;+°‘“+°)/2(6) is a continuous operator. To apply Leray-Schauder’s
theorem it remains to prove the apriori estimate

(9) ulg*® < c

for every solution u € C2+*(2+)/2(Q) of the problem

auj + b (z,t, u+ )ui — p[bi(z,t,u+ @)pi + c(z,t, u+ ¢)] — ue
(10) = pa'l p;; in Q
lu=—plpon S;u=p(p—¢)on E; u(z,00=0z€Q

with a constant C independent of u and p € [0, 1].
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The desired bound will be derived in several steps. To estimate |u|o o we consider in
Q the auxiliary function w(z,t) := e~ V*u(z,t) + pe~N'p(z), where N > 0 is a constant under
control. It is evident that w(z,t) solves the problem

Pw := awij + b (z,t,eN'w + (1 — p)p)w; + pe~Nie(z,t,eNw + (1 - p)p)
—Nw—-w =0 in Q

lw=00nS; w=peNon E; w(z,0) = pp(z)
Let m := 2|p| 5 + |ulo,e + 1. Since lw =0 =Im on S, w < |ufo,e < m on E and w(z,0) <
|¢|o,ﬁ < mon Q, if Pw > Pm in Q, then Lemma 3.1 would give w(z,t) < min Q. The
inequality Pw > Pm in Q is equivalent to
(11) 0> m(pe~Ne(z,t,eN' +(1-p)p)—Nm) inQ
because m > 0. Now

NMm 4 (1-p)e 2 2l¢lo 5+ luloe +1-lelyz >0,

0<eMm/(eN'm+(1-p)p) <2

and the structure condition (6) implies

m(pe~Nte(z,t,eN'm + (1 - p)p) — Nm)

= —Nm? 4 pe~?M (e”‘m/(e”'m +(1- p)sp))(e"'m +(1-p)p).c(z,t,e'm + (1 - p)p)

° Sm2(5CO—N)+2bo=0 ifN=5c0+2bo/m2.
Therefore
w(z,t) <m=2lpl, 5+ |uloe+1.

In a similar way an estimate from below can be deduced, whence
(12) lu'o'q <C.

Here after the symbols C;,i = 1,2,... stand for constants which are independent of u and p.
We consider now the extension L(z, t) of 1 in Q. Let T := £(do/2) where £(d) := {(z,t) €
Q: d(E (=, t)) < d}, do being defined in Lemma 3.2. Because of |I'vf| = |y| > 70 > 0 on
SN Q\X(do/8), and Th.7.1, ch.5 in [2], there is a number 3 € (0,1), independent of u and p
such that

|| < Cy(n, A a,do,Q,T,Cy, ) .

Q\Z(do/8) =
It follows that |b'(z,¢,u + ¢)|("\)n(d-°/s) and |c(z,t,u+ w)lg\)}:(d'./s) can be estimated indepen-

dently of u and p. Considering now (10) as a linear problem, the local estimates for parabolic
equations, (Th.10.1, ch.4 in [2]) give

(248) <C

14l Q\E(dosay <
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Applying the same argument for the domains Q\X = Q\E(do/2) and Q\X(do/4) we obtain

|“|(Qz\+za) <Cs,
hence .
(13) lulgls ) < Cs(C,a,0)

for every o’ € (0, a).

Now we use the family {Qp},>0 from Lemma 3.2 in order to estimate |u|(02:°' ). Let
s — (s, z,t) be the parameterization of the maximal integral curve of L, passing through
(z,t) € Qk. It follows from Lemma 3.2 (ii) that every point (z,t) € Qk can be written as
¥(p(z,t),z',t) where (z',t) € N, |p(z,t)| < K and p(z,t) € C?+2:(2+2)/2_ Therefore

p(z,t)
(14) u(z,t):uow(—p(z,t),:,t)-i-/o (Lu) o ¢(q — p(z,t), z,t) dq

for every (z,t) € Qx. We set v := ujx and suppose that v is extended in Qx as a constant
along L-curves. The integral representation yields

' ’ P ’ "
@3 < o (W8 + [ o+ 1Luig ")
0
where 0 < a” <o’ <a < 1andpe (0 K]
The equation in (10) can be written in the form Pou = Pyu with
Py := a’(z,t)D; Dj — D,

and
Pru = —pla pi; + b (z, t, u+ @)pi + c(z, t,u+ ¢)) — bi(z,t, u+ @)u;.

The action of Py on the functions, defined in Qg , which are constants along L-curves, defines
a linear strictly parabolic operator Py on N (L is strictly transversal to A). Therefore, by

means of (14), the function v € C?+*(2+2)/2(A/) is a solution of the problem

’P’v:'Plu-’Pg(Lu) mN
v=p(p—¢)on E; v=uon E’; v(z,0)=0z € NN{t=0}

where P, is a linear operator with C*?/2 coefficients, ord P, = 1 and P; does not contain D;.
Because of the parabolic estimate ( Th.6.1 in [1]) for v, we have

24a’
o)t

IA

a 2+a’ 24a’
Cr (IPru=Pa(Lu)l + lo(u — I E" + JulEF")

IA

Cs (14 1Lulg*™” + Pyul”)
according to (13). On the other hand,

Pualg” < Co (lulg**” + g (w§") < Cuo (14 1ulG**")
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since
Bz tu+ oG, le(etut pul” < €30 (g™ + WG (wG”)
and (see (7))
(u)g)(u)g’) < C{;’(Cl) (1 + Iul(q?+a )) .
Finally,
(15) |v|5\2{+a ) <O (1 + |Lu|(Q2+a ) + lul(qz+a ))
and ,
(16) (u)(q’;&o’) S C12 (1 +/ (Lu)(Q?:-a )dq + |Lu|(q't’+o )+ ‘ul(2+a::)) .
0

Our aim is to derive a bound of the form
LS+ < care) + C' @)l

with a constant C, independent of é.
Let § > 0 and ¢ € [0, K] be arbitrary numbers. If Q.45 # Qk, we define W :=
{(z,t) € Q: d((z,t),Q,) < 0/3) where § = 0(§) is the constant from Lemma 3.2. In the case
Qq+5 = Qk weset W:= Q.
The function Lu € C?+:(2+)/2(Q) solves the first IBVP
{ Po(Lu)=P; inQ

(17)
Lu = —plp onS; Lu(z,0)=0z €

where Pou := —p[L(a" ¢ij) + L¥cx + ¢ L(u + ) + L*bj o, + bipiL(u+ ) + b L] — L¥bju; —
biL(u + @) — b Lu; — ui;La*l — L¥uyp + " Lue + 207 Lfwyj € C*2/%(Q) and the arguments
of b,c and their derivatives are (z,t,u + ¢). Consequently, applying Prop.3.1 for the function
Lu and U = Q, we obtain

(18) (Luya+) < Cra(Pou)ly” + Cra(0) (1 + [Poulog + ILulg*™”) .
We note that Cy3 = Cy4 if W = Q. Carefull calculations, based on the expression of Pou, give
(19) (Pouis! < Cus (14 ulg*” + (WG + wig*”

Hu) () + (W @ + (WP 1)

and
[Poulo.q < Cis (1 + |"|(<;2+° )+ [(“)8’]2) .

Let us consider the case Q = W. Now

(PRI ™ = (WPPIWS ™) < Crrlul@*
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and 9 24a)
(wg)? < Ciz (14 1ulg*")

by means of the interpolation inequality (7). In the same way we estimate the other products
of Holder seminorms. On the other hand,

2
( )(2+a )<( )(2+a )+(u)(q7\+£l )+Cxa(do) Z(u)(ol)
j=0

and

|u|g+a )< (u)gfa ) 4 Cis (1 + Iulg" ))
because of (13). Finally, if Q45 = Qk, then the inequality (18) has the form
(20 (L3 < Caotw)@1) + Con (14 3" 4 |Lul3+")

and C5; does not depend on 6. .
If 6§ > 0 and g € [0, K] are such that Q.45 # Qk, then we define W := {(z,t) € Q :
d((z,1), Q,) < 20/3}. Let £(z) € C*=(Q) be a cut-off function with the properties: 0 < § < 1

inQ, £=1in W, § =0 outside W and | D} DZ¢| < C(B,r,0) for r + 5| > 0.
We estimate the products of the Holder seminorms in (19) in a similar way as above.
For example,

(e (W = Eu)iy (Eu)y < Eu§ Ewd

Cn|€u|(2+a )|§u|0 Q@ < Cas (Z(f“)(’) + (€u )(7+a ))

=0

IA

IA

Caa(w) 3 + Cas(0) (1 + gt ’)

IA

Cas(wgs +Can(0) (1 + 1ulG+")

We have used (13), W N Qk C Qq45 and

€3+ < (@) +(,~,,;(¢9)(1+ |G+ )) ,

2
(u>(2+0 ) < (u )(07:;‘: ) 4+ (u )(Qz\+; )+ Cas(do) z(“)(j)q .

Therefore, if Q45 # Qk, then the inequality (18) has the form (20) with new constants, the
second one depending on 6(8). The parabolic estimate for (17) and arguments as above give

ILulG** < Cao (1Poul§” + Iplssan) < Car (14 1uG*7) .

Finally, the bounds (16) and (20) yield

’ P al al'
WG < Con [ (G da+ Coo) (141G *")
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where C3; does not depend on é.
This is a Gronwall-type inequality. Bearing in mind Prop.4.1 in [5], we choose § > 0
so small that C3,.6.exp < 1. Then

(Wgre < Caa (14 1wl ")

for every p € [0, K]. Therefore,

2 CI’ 2 " 2 ’
gt = z:(u>‘”+<u)‘<,+ D < ulgt ) + g

2
+ (WS + Casldo) 3 (W) < Cas (14 ulGH)
=0

and a” < o’. The desired estimate (9) follows now from the interpolation inequality (7) and
from (12).
Returning to the problem (8), we note that the Leray-Schauder theorem asserts that
the operator U has a fixed point u = &u which is a classical solution of (8).
Acknowlegement. The author is grateful to Prof. P.R.Popivanov for his advices
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