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JACK’S LEMMA FOR A VECTOR VALUED FUNCTION

V. ANBUCHELVI AND R.PARVATHAM

ABSTRACT. We have extended Jack’s Lemma (well known in the case of complex functions
defined in the complex plane) to holomorphic vector valued functions from C to a Banach space B.

Let C be the complex plane and E be the open unit disc in C. The following result
was proved by [.S.Jack in [2].

Theorem A. Let g: E — C be a holomorphic function with g(0) =0 and g(§) # 0.
if

0y —
lg(€") = Rt l9(€)], E€E

then there exists a real number mg > 1 such that

1) Eoyi;("f)a) -
(2) Re -f:”T(f)o) +1 > mg
Let us observe that the relations (1) and (2) can be presented in the following equivalent
o < (E)€0, 9(6%) > = molg(€)’
(4) Re < ¢"(€°)€°", 9(€%) > > mo(mo — 1) |9(&°)/’

where < w,z > = wz is one-dimensional Euclidean product.

Now let us extend this result for the case of vector valued holomorphic mappings.

Let X be a finite dimensional Banach space and X* be the dual of X. Given
r€X, r#0 define T(X) = {z* € X*/z*(z) = |z| and ||z*|| = 1}. Note that T(X) is
non-empty.

Let D be a domain in C and f:D — X be a holomorphic Banach (vector) valued
function. (For details see [1])

Theorem. Let f:E — X with f(0) = 0. If |[f(20)|| = maxj; iz [[f(2)Il, 20 € E
then there ezists a real number mg > 1 such that

(5) << Df(z0)20, f(20) >> = mo << f(20), f(20) >>
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where << z,y>>= y'z, and
(6) Re << D?f(20)(z0,20), f(z0) >> > mo(mo — 1) << f(20), f(20) >>

Proof. Since for f(z) =0, (5) and (6) are trivially true, we can assume f(z) # 0.
Consider the function

9(6) = << ;(f-z‘o—“l). f(z0) >> .

Now, g(€) is a complex valued holomorphic function in E, g(0) =0, g(§) #0 in E\{0}.
It is easy to check that from the assumption is follows

max lg(€)l = lg(€°)| where £° = |z]

l€l<|€
= << f(20), f(20) >> = |f(20).

All hypotheses of theorem A being fulfilled, there exists a real number mg, mg > 1 such
that (3) and (4) hold. Since g(£°) = << f(z0), f(20) >> , ¢'(§°)E° = << z0f'(20), f(20) >>
, after substituting in (3) we get

< << 20 f'(20), f(z0) >>, << f(20), f(20) >> >
= mo < << f(20), f(20) >>, << f(20), f(20) >> >
<< z0f'(20), f(z0) >> = mo << f(20), f(20) >> .
This gives (5). As g”(fo)C"2 = << D?*f(20)(20,20), f(z0) >> substituting in (4) we get
Re < << D*f(z0)(20,20) f(20) >>, |f(20)] > 2 mo(mo = 1) |f(20)* ,
Re << D?f(20)(20,20), f(z0) >> > mo(mo — 1) << f(20), f(20) >> .

This gives (6).
Thus the proof of the theorem is completed.
It will be interesting to study the applications of this result to geometric function

theory.
The study was partly supported by the Third World Academy of Sciences under grant
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