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A NOTE ON N-FUNDAMENTAL TENSORS OF A
HYPERSURFACE OF A RIEMANNIAN SPACE

S. C. RASTOGI

ABSTRACT. The coefficients of the r-th fundamental form C(,)as of a hypersurface of a
Riemannian space were defined and studied by Rund (1971). The purpose of this note is to define the
r-th normal curvature and to study some of its properties when the riemannian space of n-dimensions
reduces to Euclidean space of n-dimensions.

' 1. Introduction. Let V,, be an n-dimensional Riemannian space with coordinates
z', i=1,...,n, metric tensor g;j(z) and curvature tensor Rj;ji. Let V,,_, be an n-dimensional
Riemannian space with coordinates U®, a = 1,...,n — 1,metric tensor g,s(u) and curvature
tensor Rqpyc and let it be imbedded in V,, so that [1]

(1) 9ap = ﬂijB:;B‘; = 9r' o .

Let N' be a unit vector normal to V, _, then we have

(2) €(N)gi; N'N? =1,
(3) N;B:, =0

(4) BB =&}

(5) BB} =& - N'N;

where £(N) is the indicator of N (which we assume to be 1).
Let 2,5 be the second fundamental tensor of V, -, then the coefficients of r-th funda-
mental tensor C,)q are expressed [2] through

(6) C(r)aa = gnnmc(r-lhp, r=2...,n,

where C(1)ap = gap a0d C(2)ap = Qap.

2. The r-th normal curvature. Let K(u,u) be the normal curvature of V,,_, at the
point P, in the direction of the unit tangent vector ‘. Ten K(u,t) = Q,pu®u”. If we replace
u¢, by an arbitrary vector u‘, tangent to V,,, at P, then we have

Q,p "‘a,“ﬂ - Q..,du"du’

) K(u,u) = 1P~ gepduede?
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Definition 2.1. The r-th normal curvature in the direction of an arbitrary vector u‘
tangent to V,,_, at a point P is defined by

C(ryap uruf
gop{‘af‘ﬂ

(8) K(ry(u,u) =
From (8) it follows that K(3)(u, %) = K(u,u). For r = 3, we obtain

(9) C(g)apl'lat'lp = gl7na""a"‘ﬁ .

Now using the equation of Gauss (1] in a hypersurface of Riemannian space

(10) Raﬂ-n = R‘jhlB:j;:‘ + (Qa'ynﬂc = Qatﬂﬁ‘y)

together with z = B%u® and M = g®’Q,4, we obtain

(11) Ci3)apii®#® = MQapi®i® + Rini'2* — Rapu®i” — Rijnd'e* NIN® .

The equation (11) by virtue of (8) gives

(12)  Ks)(u, ) = MK (u, @) + (gapui®) ™" [&hé‘t" = Rapi®if® — Rijei' " N? N*]
equation (12) for u¢ = u‘ reduces to

(13) K3)(u, ) = MK + Rip#'#* — Rapi®d’ — Rijaed'#* NIN®

Similar to (12) and (13) for r = 4, we can obtain

(14) K(3)(u, i) = MK)(u, %) + (9apu®4”) ™ (Qacu®)
x [R.-.B;g'u" - Rypg "’ — R‘-,-;..i“g"'BLN"N"]

and
(15) Ky = MK(3) + Qa,4” [R.-,B;g”.é“ — Rypg* "’ — R.-,-,..g"B;’NfN"z"'] .

By an easy calculation it can be proved that
(16) Ciryap = 9°%C(r-2)a0C3)asC(a)9s, T2 3,
which gives
(17)  Ciryap® s’ = MCir_1)apu®’
~Clr-2)asu®W® R + RinBYE*Cl_y 4" — RijaeClh_y), Byz* N Ntua .
From (17) we obtain

(18) Kpy(u, ) = MKy - (gapu”s’)”! [C(,-,)c..nk"d"R},

o - . . ]
+RMC(‘,_,)¢,“° "th - R{juczl__.“aB;Ih[“ 'V"u"
b
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and
(19) Ky = MKq_y)- [C(,_,),,.Rf,a".z*’
+ RihC(’,._,)ati"B:ih - Rijhkc(.,_z)ali°3;z"'N’N"] .

Hence we have for r > 3
Theorem 2.1. The r-th normal curvature in the direction of the unit vector 4® is
ezpressed by (19).

3. Codazzi equations. It is well known [1] that the Codazzi equation for a hyper-
surface V,_; of V,, is given by

(20) Qagly — Rayis = Nj Ry BoBS By

where ||y means a covariant derivative.
With the help of (20) we obtain

(21) Cisyally = Cisravhp = Qaely ¥ — Racoy + X N; B}, B B3 By .

By a similar calculation we get
(22)  Clasir —Cwrantp = ClapQasly = ClayyQasiis + % [Qu“,n;
~Q8 Qs + QU N; Ry, By B;B.','] :
Using equation (16) together with (21) we can obtain
(23) Clryasty = Cryatp = ClaygClr-2)atlly = ClapCir-2atis + Co_3)a
'[ﬂoslhﬂiv = Qe + N Ry, By 3334'] ,

which is an equation analogous to the Codazzi equation for r > 3.

4. Some special Cases.
Case I. Space of Constant curvature. If V, is a space of constant curvature Rijne is
expressed (1] by

(24) Rijne = k(z)(gingjk — 9ikgjn) ,
which gives
(25) Rin = k(z)(n = 1)(gin -

From equation (9) and (24) we can easily obtain

(26) RY, = k(z)(n = 2)8; + (MR, - Cls)a) -
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Substituting from (24), (25) and (26) in (19) we obtain after simplification
(27) K(yy = MK(s_1) = 2(n = 2)k(2)K(r-2) — C(r-2)as i’ (M 65 — Q)0 ,

which gives
Theorem 4.1. The r-th normal curvature in the direction of the unit tangent vector
ta for a hypersurface V,_y of a space V,, of constant curvature is given by (27).

Substituting in (23) from (24) we obtain
(28) Ciryasly = Ciryais
= ClaysClr-natlly = Clan Cir-2)aslie
+C2 _pyaRaeln @ — Qucys ) |
which is an equation analogous to the Codazzi equation in a hypersurface V,_, of a space of

constant curvature V,,.
Case II. V, is E,,. In this equation (10) gives
(29) Rapye = QarQse — Qacpy
where (19) gives
(30) Ky = MK(r—1) = C(r-2)as RG4S .
From (29) and (30) we can easy obtain

(31) K(ry = MK(r_1) = C(r-2)asi®uB(MQ5 — Q33) ,

which implies
Theorem 4.2. The n-th normal curvature K, of a Riemannian space V,_, imbedded
in the Euclidean space E,, 1s given by (31).

Remark. In this case equation (23) again reduces to (28).

Case III. Both V, and V,_; are spaces of constant curvature. In this case the equation
(19) reduces to
(32) K(ry= MK(;_1)— (n — 2)(k(u) + k(z))K(r-2)
where k(u) is a term in V,,_, similar to k(z).

Substituting the value of k(u) in (32) we get

(33) Kry = MK(,_y) = (n = 2)[2k(u) + (M? = Q2Q5)/(n = 1)(n = 2)| K(,_2) -

Hence we have
Theorem 4.3. The recurrence relation for the r-th normal curvature of a hypersurface
of constant curvature imbedded in a space of constant curvature is given by (33).

If k(u) = k(z), ie., if Qay Qe = QacNpy, then (33) reduces to
(34) Ky = MK(_y)—2(n = 2)k(z) .
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