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PARALLEL NUMERICAL ALGORITHM FOR SPECTRAL
PROBLEM OF BLOCK HERMITIAN MATRICES

IVAN G. IVANOV

ABSTRACT. An effective parallel numerical algorithm for solving the complete
spectral problem for an arbitrary block Hermitian matrix is proposed. It is modifi-
cation of Jacobi’s cyclic method [4] and a generalization of the parallel modification
of the Jacobi’s method, proposed by Sameh (1971).

1. A description of the algorithm. Let A = A;; be n X n a Hermitian block
matrix with square blocks A;; of order b. Thus A is a scalar square matrix of order
nb. The algorithm suggested in the present paper is reduced to the construction of the
following sequence of matrices, similarly to Jacoby’s classical method
(1) A® = 4 AW A
where each matrics A(**+1) is obtained from the previous one A(*) by unitary similar
transformation of the type
(2) AW+ — pWH 4 () (v) (U(U)HU(U) =1).

We shall give an idea for the algorithm by describing its first step, which is as
follows:

(3) A=U"AU ,
where the unitary matrix
U= (Ui)=Ilg=y Ux if nis odd and
= (Uij) = [Ti=o Ux  if nis even.

Each Ui is a product of o unitary matrices Uk,, Ux,,..., Uk, and ay = b% or ay =
(b® — b)/2. As we shall see below each Uy, consists exactly of n or 4[n/2] or 4[n/2] + 1
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non-zero blocks, where [z] is the greatest integer less than or equal to z. The first two
cases hold for even n. The last one is valid for an odd n. Moreover, if there exist n
non-zero blocks, then they are on the main diagonal of Uk,.

Let each ¥ = 2[n/2] + 1 consequtive unitary transformation of a given matrix
A with matrices Uy be denoted by a sweep. Let Ayxyy = U,f’AkUk. If n is an even
number, then k = 0,1,...,n and Ag = A, A1) = A, .,. If nis an odd number, then
k=1,2,...,nand A; = A© AN = 4, ., and

(4) Uy = UklUk2-~-Ukak .

It is typical for the presented algorithm that cach unitary matrix Uy, annihilates
exactly one element in exactly [(n + 1)/2] or [n/2] different blocks of the matrices
VHALV and V = H’; Uk,. Let us denote by I; and Ji the sets of the values od the
first and second indices of the blocks of matrices A (0 < s < kor 1< s < k) whose
elements have been annihilated so far. Ajy, is obtained by unitary transformations
with matrices of type Uy, (1 < p < ai). For each p and fixed k the localisations of the
non-zero (zero) blocks in Uy, are not changed. These non-zero block are arranged in
such a way that the elements in blocks (i, 7) from VH A,V for which i ¢ I, and j ¢ Ji
to be annihilated. Moreover, the positions of these elements in a given block change
cyclicly.

We want to construct the matrix Uy, = {U;;(k,p)} so that the element being
in position (I, q) of an (r,s)-block of V# A,V annihilates.

Let for r # s

Urr(kyp) = dia'g[ll—lv COS((p), Ib—l] )

Uss(kvp) = quUrr(kvp)Pl,q ,
- sin(t,o)exp(izb)eleqT, r<s

Ura(k»p) = { sm(<P) exp(—ﬁ/f')eleqT, r>s
Uar(kyp) = “(Urs(k’p))H '

Let forr = s

(5)

_ T=TWHqe9), T<p<bb-1)/2
(6) Urr(kap) - { T P > (b(b— 1)/2

where ¢ = @(r;8;1;q), ¥ = Y(r;s;1;q), €; and e, are corresponding vector colums of
the unit bx b matrix I. The matrix P, , is a permutation matrix which rearranges ! and ¢
rows and colums. The matrix T'(I;¢;¢;%;), ¢,5 = 1,...,bis chosen so that t;; = §;; for
(1,3) € {(1,1),(4:9),(1,a), (g, )} and ty = tog = co8(@), tiy = ~T = — sin(p) exp(i).
Next we are going to show how to determine pairs (r,s) and (/,q).
Let n be an even number and m = n/2.
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Now we choose the indices (r,s) of the blocks for £k = 0,1,...,2m by using the
following formulas:

a) ifk=0, thenr=s5=1,2,...,n/2.
b) fork=1,2,....,m-1
s=m—-k+1, m—-k+2,...,n—k

(7) r=2m-2k+1-s, m—-—k+1<s<2m-2k
r=4m — 2k — s, 2m -2k <s<2m-—-k -1
r=mn, 2m—k=s

c) fork=m,...,2m -1

s=4m-n—-k,dm-n—-k+1, ..., 3 m—-k-1

r=mn, s=2m—k

r=4m -2k — s, 2m—k+1<s<4m -2k -1
r=6m-—2k—s, dm -2k -1< s

d) ifk=2m, thenr=s=n/2+1,...,n.

Let n be an odd number and m = (n + 1)/2. Then we choose (r,s) for k =
1,2,...,2m — 1 as follows:

a) letk=1,2...,m-1
s=m-k+1, m—k+2,...,n-k, n—k+1

r=2m-2k+1-s, m—-k+1<s<2m -2k
r=4m — 2k — s, 2m -2k < s<2m-k -1

8 r=2m-—k, s=2m—k

( )b) let k=m,...,2m—1
s=4m-n—-k—-1,4m-n—-k, ..., 3 m—-k-1
r=2m-—k s=2m—k
r=4m - 2k — s, 2m—k+1<s<4m -2k -1
r==6m-—2k—s, 4dm -2k -1< s

Having found pairs (r,s) through the above formulas we have to choose the
indices [, q of the elements in the blocks (r,s):
a) if r # s, then

(,9) = [(1,1),(1,2),...,(1,0),(2,1),(2,2),...,(b,1),...,(b,b)] .
b) if » = s, then

(l,9) = [(1,2),...,(1,0),(2,3),...,(2,b),...,(b = 1,b)] .
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2. Examples. 1. If n = 6 then m = 3. If k£ = 3, then the positions (r,s)
of the non-zero blocks obtained from (7) are (r,s) = [(1,5),(2,4),(6,3)]. The matrix
Us = ;’,;bl Usp, Usp for each p is of the type

where the non-zero blocks of Us, obtained from (5) are denoted by ”*”.

2. If n = 6 then m = 3. If kK = 6, then the positions (r,s) of the non-zero
blocks obtained from (7) are [(4,4),(5,5),(6,6)]. The matrix Us, = H:’;l Usp, ag =
b(b—1)/2, Usp for each p is of the type

U6p = dlag [1, 1,1, T4’ TS’ TG]

where T; = T'(l; ¢; ¢i; ¥i), 1 = 4,5,6 are blocks of type (6).

3. If n = 5 then m = 3. If £ = 5, then the positions (7, s) of the non-zero blocks
obtained from (8) are (r,s) = [(1,1),(5,2),(4,3)]. The matrix U, = ]_If,'zbl Usp, Us, for
each p is of the type

U5p - . B * o+ % . s

where the non-zero blocks of Us, obttained from (6) are denoted by “x”.

Pairs (r,s) and (/,q) for the matrix A are determined as in Jacobi’s mathod
for scalar matrices with, cyclic choice of indices. The convergence for Jacobi’s cyclic
method is proved by Henrici [2]. In this case matrix A is reduced to a diagonal matrix.
A diagonal form of A is obtained by using somé criteria for convergence given in (4]
in 3 sweep. The approximate eigenvalues of A are situated on the main diagonal of
As = WHAW. The columns of W = Hf;(} U(%) are the corresponding eigenvectors.

The parallel method may be implemented when working on computer ILLIAC
V.

3. Numerical Results. Numerical experiments are accomplished with real
symmetric matrices, whose elements are random numbers in the interval (0,1] for nb =
16,32,48,64,72. Ten experiments have been made for each nb by three programs. The
first program is program NBCJ for the above algorithm. The second program is that of
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Jacobi for Sameh’s algorithm used on sequential computer. The third involves program
TRED2/TQL2 [5]. All the results obtained have been compared.

The conditions of the experiments are similar to those described in [1]. The
average time for computing the eigenvalues thought TRED2/TQL2 is 5, 30,99, 230, 320
seconds for nb = 16,32,48,64,72 respectively. The avarage time for computing the
eigenvalues by Jacobi’s program is 9, 72,246, 600,865 seconds for nb = 16,32,48 61,72
respectively. Table 1 shows the average number of scalar rotations with Jackobi’s and
NBCJ mehtods. Figure 1 shows the average time of the execution of the three programs
used (TRED2/TQL2, Jacoby, NBCJ). Figure 2 shows the ratio between the average
number of rotations (NBCJ) and the average number of rotations (Jacobi) (see Table 1).
Figure 2 shows the ratio between the average number of rotations BCJ and the averadge
number of rotations (Jacobi) (see Table 2 [1]).

8t T NBCJ
600 + Jacobi
400 1
+
20 /TRED2/TQL2
| | |
20 40 60

80
Figure 1. Average solution time for nb = 16, 32,48, 64,72.

The results given in the figures and the Table 1 show that the algorithm offered
for block Hermitian matrices is more effective than BCJ mehtod [1]. The time and the
number of the scalar rotations with BCJ depend on the size of block b, while they do
not depend on that size NBCJ.

Jacobi | NBCJ
nb b| AVG | AVG
16 4 624 629
32 2 2976 2981
48 4 7162 | 7129
64 4 | 13530 | 13667
72 8| 17444 | 17668

Table 1. Average number of scalar rotations (Jacobi and NBCJ) 10 trials.
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Figure 2.(Avg.rot. NBCJ)/(Avg.rot. Jacobi) from Table 1
(Avg.rot. BCJ)/(Avg.rot. Jacobi) from Table 2 [1]
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