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INSERTION OF E,(A) TO L., FOR THE BEST APPROXIMATION
IN HAAR’S SYSTEM OF FUNCTIONS IF 0< p <1

JANOS TOTH, LASLO ZSILINSKY

Introduction. Let {X,(t)};Z, be a Haar’s orthonormal system of functions
defined in [0,1] as follows:

Xi(t)=1, if t€[0,1] and for n = 2™ 4k,
where k = 1,2,...,2m and m = 0,1,...
Vo, for te (33, %L

Xa(t)=({ —v27, for te (2 Bt 72,

0, for t¢[kL k.

At the points of discontinuity the Haar’s functions are equal to the arithmetic
mean of left and right-hand limits, and furthermore X, (0) = lim,_, X.(t), Xa(1)=
llmg_.l_ [2]

FOT 0 < p < oo we shall denote by L,[0, 1] the space of all measurable functions
f defined in [0, 1], such that

“f||p={/oool l"dz} < oo.

It is known that L, is a Banach space with the norm ||f||, if 1 < p < 0o, and
for 0 < p< 1, L, is a Fréchet space with the metric -

9) =l - gll5-
For f € L,,(0 < p < 00) we shull denote by

ED(f) = inl IIf = 3 axXillp, (n=1,2,..),
k=1
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where || || = ess sup|f(z)]|.
0<z<1

It is obvious that E )( f) expresses the best approximation of the function
f € L, by Haar’s polynomials of not more than n-th degree.

Let 0 < p < 00 and A = {A,}22, be the sequence of real positive numbers such
that A, \, 0. The symbol E,(A) will stand for the class of all functions f € L, with

the property E,(‘p)(f) =0(\).
The following theorem is valid (see [2] ):

Theorem A. If1 < p < oo and {A,};2, is a sequencs of positive real numbers,
such that A, \, 0, then

Ey(M) C Lo iff S n#'As < oo holds.
n=1
The goal of this paper is to prove the same theorem also for the case 0 < p < 1.

Lemma 1.  Suppose that 0 < p < 1,¢ > 1 and {vk}}2, is an increasing
sequence of integers. Then

Ugbl—l

3 ip 1 </

1=V Yk

Vk41

27 'dz holds for k=1,2.....

Proof. From the conditions of Lemma 1 it follows that % —1 > 0, so the

1y, . o . .
function f(z) = z» ' is increasing in the interval [vk, vk41]. With the help of Lagrange’s
meanvalue theorem we can easily verify that

1+1

9 2_ .

1P 1</ z¢ Vdz (t=vkvk+1,. . vk — 1).
i

After the addition of these inequalities we obtain

vikg1—1 vk4r1—1
P 1+1 P Vk+41 91
E P < E zp dr = zr dzr. O
1 vk

1=vg 1=

The definition of Haar’s functions implies the lemma:

Lemma 2. Let 0 <p<oo and 2™ < n <2™*'. Then

I Xall, = 2"375)  holds.
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Lemma 3. Suppose that 0 < p < 1 and {a;}2, is a sequence of real numbers.
Then
(o e} oo
IZ a;|P < Z |a;|P holds.
=1 =1

Proof. It is enough to show that (|a,| + |az|)? < |a;|P + |a2|P. We can propose
that a; # 0 and |a,| > |a2|.

Since 0 < p < 1 then the function f(z) = zP~! is decreasing in [1, o], so from
the meanvalue theorem for a suitable ¢ € (z,z + 1) we obtan

(1-z)P—2P = pcP 1 < zP71 <1, thatis
(1-z)?P—2P <1, forall z€[l,00).
The substitution z = {:—;' > 1 implies the desired inequality. O

Lemma 4. Let 0 < p < q < oo and {A,}32,, respectively {un}s, be
sequences of real positive terms such that A, | 0 and p, | 0. The sufficient condition
for the insertion E,(X) C E4(p) s

e 1
w4 [ Y KA = Oun).
k=n+1

Proof. It follows from [1] (see Theorem 2.4 ). O

Main Result.
Theorem. Let0 < p <1 and {\,}32,, be a sequence of positive real numbers
1
such that A, | 0 and A\,n?~% | 0. Then E,(\) C Lo iff

(o e}

(1) Y nr, < .
n=1

[,

Proof. Suppose that 0 < p < 1 and (1) is valid. Then all the more
(2) 3 nr i, < .
n=1

holds.
Let us define a sequence {1, }2°, as follows:

1 = 1_
pn=nr At D kP TIN (n=1,2,..0).
k=n+1
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Connections (1) and (2) imply that p, | 0, so from Lemma 4 for the sequence
{#n}2, and ¢ = 1 we obtain E,(A) C Ey(u). The question is whether Y Hn <00
holds because afterwards from Theorem A we shall obtain Ey(p) C Loo, thus E,(A) C
Lo,. However from (1) we can derive

0 e ) ) X
Yo=Y w4 D Y kTN
n=1 n=1 n=1k=n+1
o o o e
Z n;_l,\n - Z E k;_zz\k =2 Z nF—l/\n < 00.
n=1 n=1k=n n=1

1_
Conversely. Let 327 n? '\ =00 and 0 < p < 1. We shall define a sequence
{vj}52, as follows:

1
vy =1 and vj3 =min{n: A, < 51\,,1}, (7 =1,2,...).

Then obviously

1 1
(3) AVJ+l\ S 5’\11] a'nd AIIJ+1—1 2 EAU]'
Furthermore Lemma 1 and the fact that {1,;}32, is a non-decreasing sequence
imply
o0 oo Vk41—1 00 Vel oo 1
ILARIED DID DR DD SV P AT iR P W7 A
n=1 k=1 i=vy k=1 Yk k=1
Thus
heasd 1
(4) z:pz\.,,‘u,:’+1 = oo.
k=1
Let us denote by
(5) mig = max{n: 2" < 1}, (k=1,2,...).

One can easily realize that the proof will be fulfilled if there exists a function
f € Ey()) such that f ¢ Lo. Let us show tat the function to be found can be defined
by

N ma(L-1
flz) =3 2™ BTN, Xom ().
k=1
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Taking into account Lemma 3, Lemma 2 and (3) we have

1 o
me(di—
If (@) = /o S 2 GHN, Xgma g (2)Pdz <
k=1

(o<}

320N [ Xgma g1 (272 =
k=1

oo o0
—prk .
Yo < Y R@P < o, ie feL,
k=1 k=0
Moreover it is necessary to prove that E,(A) = O(),).
Let n be a constant integer and

2Mk-1 4+ 1< n< 2™ (my is defined in (5)).

Choose constants a; (¢ =1,2,...,n) as follows:

ém’(%_%)/\‘,’, for 1'=2m,+1 (]=1a21k—1)
a; =
0 for other 1.

Then from Lemma 3, Lemma 2 and (3) we obtain

00 oo
mo (Lo
(EPA)P <125, Xamer = - aiill =
1=1

i=1

00 o0
1_1 Iy »
I Z2m1(, Z)AV,X2"‘J+1“£ < § om, (1 2)’\51”1\2""‘““5 =
—k =k

-
1

o0 o0
Z '\5) <AL+ ZA5k+x(2_p)J = ’\5:: + /\zki'l 1-2-7
j=k =0

There 2™*-1 + 1 < n < 2™k < yiyq holds as we can see froh (5) and since the
sequence {A,};2, is non-decreasing, A,,,, < A, holds as well. The second part of (3)
and the inequality vx41 — 1 > n imply that A, < 2),.

Thus (E,(.’)(f))l’ < Ah(2P 4+ ﬁ_—,), what is equivalent to the equality E,(,”)(f) =
O(An).

We shall prove that f & Loo. Assume that f € Lo, and let us define functions
Ho(z) = 3 3_127 Xnyy(2) forn=1,2,....
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Evidently we have:
ontl _ 2 for z € (0, g_nlﬂ')’

(6) H.(z) = -2, for z€ (ﬁ,—,,;‘;), for every k=1,2...,n,

0 for z € (3,1)

For every integer n there exists an integer i(n) such that m;) < n < Mmj(n)41,
i.e. by the orthonormality of Haar’s system we have

i(n)

1
(7) [ 1@ 8@z = Y2,
0 k=1
Furtheremore by Hélder’s inequality
1
®) [ f@) )z < 1ol
holds.

From (6) it is evident that

1
(9) Holl = / |Ho(20)dz < 2,
0
s0 ||H,||; is bounded for n = 1,2....
The connection (8) with (7) and (9) implies that

i(n)
Y 2™\, < 2|flloe holds for arbitrary .
k=1

Since i(n) — 00 as n — 00 and 2™k < vg4 < 2™k*1, therefore
1 lem _, 4
“f”oo 2 5}:2"‘*”\4 2 522 p":ﬂ’\vr
k=1 k=1

From (4) we can easily realize that ||f|| = co what is a contradiction with the
assumption f € L. O
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