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INFINITESIMAL BENDING OF HIGHER ORDER OF
ROTATIONAL SURFACES WITH A PLANAR POLE

LIVANOVA-KARATOPRAKLIEVA

ABSTRACT. The present paper is devoted to a study of the connection between
the order of flattening of the pole of a rotational surface and the numbers of the
regular fundamental fields of infinitesimal bendings of the 1-st order of the surface,
which can be extended to regular fields of infinitesimal bendmgs of the higher order
in a neighbourhood of the pole.

1. Introduction. In this paper we investigate the behaviour of the fields of
infinitesimal bendings (inf.b.) of higher order in a neighbourhood of a planar pole of
a rotational surface. N. V. Efimov was the first to discover [2] the possibility for a
rigidity "in the small” of an analytical surface in a neighbourhood of a planar point
with respect to relatively analytical inf. b. Complete references for later investigations
on inf. b. of surfaces with a planar point can be found in [9,12].

2. Equations of infinitesimal bending of order m. Let in the space R® a
coordinate system with orths ey, 3, e3 be introduced, and let the surface S be obtained
by rotation round the 0z axis of the plane curve

(1) L: p=p(2), z€[0,1)], p(z) € C%(0,1), ¢ > 2, p'(0) = o0

where p is the radius of the corresponding rotational parallel, and z = 0 and 2z = 1
are the poles of the surface S. Let us suppose that in a neighbourhood of z = 0 the
meridian L has a representation

(2) z=p" i(2),

where n > 2, f1(0) # 0, fi(p) € CA[0,¢),n — 1> g > 2 when n is an odd integer and
[n] > ¢ > 2 for every other n. Then in a nexghbourhood of the pole z = 0 we have

:I'—'
MI»—-

(2) p(2) = 2" p1(2),m(0) # 0, pr(2) € C4(0,¢), m <
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parabollic point, i.e. K|, _

LIvanova-Karatopraklieva

Let us remark that in the case n = 2 the pole z = 0 is a nonparabilic point of
the surface, i.e. the Gausse curvature K|,_, > 0, and for n > 2 the pole z = 0 is a
o = 0. Moreover when the pole is a parabolic point, then it

is a planar point of the surface (the order of flattening of the pole z = 0 is n — 2).

Let us represent the radius vector of the surface S and its inf. b. S; of the m-th

order in the known way [1].

where

(3)

According to [1] for the fields é, j=1,...

(4)

(5)

S: T(Z,O) = ze3 + p(z)e(0),
Se: 1(2,0,t) =1(2,0)+ Y _t12(2,0),

=1
0<z<1,0<0< 2, e(f) =cosb.e; +sinb.ez,

% (2,0) =& (2,0).e3+ B (2,0).e+ ¥ (2,0).¢, j=1,...,m

1 , 1
az +P ﬂz= 0)

1 1
B+ 7= 0,
1 ;1 1 1
ag +p'(Bg =)+ p7:=0;

1 -l ' =l
(a a,+ﬂﬂ +7z z)v

. . J-1 . =] : |- ) =1

Yo+ B= —% Z[&ajalo +(éo ~ (B - )+ e+ B)(To+ 5 ),
=1

; ' ; ' 1 j— - -1

bo +0(Bo - )+ pHu= - E[a, alo 48, (Bo="T)+7 (Vo + B,

j=2,...,m,

are satisfied.

,m, the systems of differential equations
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Let }k (2,0), k > 2, be a fundamental field [1,5] of inf. b. of the 1-st order of
the surface S. Then

1k6 —iké
’

¢11=tlu (2)e"™" + &_k (2)e

(6) B=B (2)e™+ B_y (2)e™*,

11 . 1 .
Y=Yk (z)e'"+ Y-k (z)e"'“.

The fields fz (2,0), 7 = 2,...,m, are extensions of the field ;k (2,0), and they
have [1,11] coordinates

Py

&(z,0)=) [&i-an,)k (2)el2RK0, &_(j_an,)k (2)e”U-2RIKE)
h;=0
2 SN (i-2h,)kib | —(j—2h,)kib
(N B0 = 3 Bii-ank ()T MH4 b5 50 (2)e” 02K,
h;=0
j P ) o . .
¥ (2,0) = Z (Y(i-2n,)k (2)€V"RIROL Yo on i (2)e~ U7 2R)RE),
hy=0 a
with respect to the moving frame k,e,e’, where p; = % for even j and p; = ] ; ! for

odd j,7=2,...,m.
1
If we substitude (6) and (7) in (4) and (5), then for the functions ax (2), By (2),

1 J P J .
Yk (2) and &(j_amj)k (2), Bj—am,)k (2), Y(j-2n)k (2), 5 = 2,...,m, h; = 0,...,p;, we
get the following systems of differential equations

1 1
o'k (2)+9' B (2) =0,

(8) By (2) + ik Y (2) = 0,

ik & (2) 4 7B ()= 1o ()] + p 7% (2) = O

] J ]
o' (j-an,)k (2) + 0" B'(5-an, )k (2) =kl,(j-2h,)k (2),
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jl of s J J
(9) B’ (i=2m,yk (2) + (7 = 2h; )k V(j_an,)k (2) =R2,(i-2h,)k (2),

. j o s J j
i(J — 2hj)k &(j—zh,)k (2) + P'[3(7 — 2h;)k Bi—amk (2)= V(j-2m,)k (2)]+

J J
P Y (j-2n,)k (2) =Ra (j-2m)k (2),

where
j 1222 -l
(10) Ry (j-2m)6= =3 SN (@ oan e +
=1 ()
gl Lol
Bk B (G=2hj—ri)k + V' ek Y (5-2h;=ri)k)>
j 1A 1=l
(11) Ra,-am= — 57 YN (kPG - 2k — 1) @rp @ (5-2h,-r)k
=1 (m)
) 1 I} . =1 =l
+(irik Bk — Vrk)i(G — 2k — )k B (j—ah,—rk = 7 j-2h,—ri)k]
] Lo =l il
+(irtk Ve + B )i(G = 2k = 1)k ™Y (oan,—rpk = B j-2n,—rkl}
; =" o=t
(12) R3,(j-2h,)k= — Z Z{t(j —2hj —m)k &'r k@ (j-2h,-r)k T
I=1 (r)

A il izl
Bk 85 = 2k — 1)k B (jan,—rgk = 7 (G-2h;-rokl+

] j=1 -1
Yk (17 = 2R = r)k ™Y (5o2m,—rpk + B (j-2h,-r)kl}-
Remarks: -
1) The summation index r; in (10)-(12) takes values in the set {£(/—2h;), h; =
0,1,...,p} so that the numbers j—2h;—r; belong to the set {+(j —1—2h(;_y)), h(j_y) =
0,1,...,p;-1}; 2) To every number j, 2 < j < m, there correspond p; + 1 systems

. i :
of equations (9); 3) The functions &_(,-_3,,,),, (2), ﬂ_(;’_zh’)k (2), %_(j_gh’)k (2), 7 =

1,...,mhj=0,1,...,p;,p; = ‘% for j even and p; = . for j odd, are conjugate to

, i A
the functions &(,-_g;.,)‘, (2), ﬂ(,_u,)k (2), ‘{{(_,-_“,)‘, (2) and hence they satisfy systems
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of equations which are conjugate to (8) and (9), which need not to be considered; 4)
For even j the subscipt (j — 2h;)k in (9) takes the values 0,2k, 4k, ..., jk, and for odd
J the values k, 3k, 5k, ..., jk.

3. Behaviour of the fields of infinitesimal bendings of order m in a
neighbourhood of the pole. A field % of inf. b. of the j-th order, j = 1,...,m, of
the surface § is called regular, if it belongs to the class C?, ¢ > 2, out of the poles and
if it is continuous on the whole surface. If the surface S has regular fields g, . ,fz of
inf. b. of the 2-nd, ..., j-th order correspondingly, which are extensions of a non-trivial
regular field % of the 1-st order (; is trivial when z= QA r +w with constant vectors
and w ), then it is called nonrigid of order j.

Let ;k, k > 2, be a regular fundamental field of inf. b. of the 1-st order in a
neighbourhood of the pole z = 0 of §. We are looking for its extension into a regular
field Z of inf. b. of m-th order, where m is an arbitrary positive integer. For m = 2

and m = 3 this problem is studied in [5] and [6] correspondingly. Starting from the
results obtained there, we shall solve inductively the problem stated.

Let us remark that: 1) if the field ;k belongs to the class C! out of the poles,
then it belongs there to the class C?, ¢ > 2 [7]; 2) here a neighbourhood of the pole
z = 0 means any part Sp of the surface §, which contains the pole z = 0 and which is
restricted by a parallel.

From the regularity of the field ;k, k > 2, it follows that in a neighbourhood of
the pole z = 0 the equalities

1 1
ay (2) = 2Bm=14m)l o0, (2),

1 1
(13) By (2) = 230+l g0, ()

1 1
i (2) = Al 40, (),

1 1 1

0% (0) £ 0, 5% (0) £0, 1% (0) £0, m € (0,3],
are valid [3,7], where

#k(n1) = V14 dny(1 - ny)(k? - 1).legno(14)

Let the regular fields ;, s=2,...,7—1,of inf. b. of the order s = 2,...,5 -1,

which are extensions of ;k, exist. We shall suppose that when s is even, 2 < s < j -1,
s

the integration constants ¢, &, in 7o and & (see [5,6] for s = 2,3) are equal to zero
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(it always can be achieved by addition of a trivial component of the inf. b. of order s
(4,10)).
We shall suppose that in a neighbourhood og the pole z = 0 the equalities

s
c‘.(._%‘)k (z) = 2H(5(2n1 =34 ua(n1))+2) 00(.+2h.)k (2),

s s
(15) Bla—anyi (2) = 2318(2n1 =344k (m))+4-2n1] B (o-2myk (2),

s 8
YV (s—2h4)k (2) = z}[l(?m =3+ux(n1))+4-2n1] 70(._2’“)" (2),

s=1,...,7—-1, h,=0,1,...,p,
are valid (for s = 2 and s = 3 these equalities are proved in [5] and [6] respectively).

Evidently the problem of finding a regular field %, of inf. b. of the j-th order
in a neighbourhood of the pole z = 0 of the surface S, as an extention of the regular

fields ;,,, .3,,” .. lek leads to the problem of finding a regular solution of the system (9)
in [0, 2], 20 € (0,1). _
3.1 Let j —2h; # 0. Eliminating &(1-2’*;)" and ‘Jr(j_g;.,)k from (9) we obtain for

J
B(j-2h,)k the equation

J. | |
(16)  p(2) B"(j-an,pk (2) + "(2)I(G = 2h3)k? = 1] Bisan,pk (2) =Ris-ampe (2),

where
J - " J jn . 2h: 2k2 I]Z .
R(j-2n,)k= —P R (j-2h,)k +P R 2,(j—2h;)k —(3 — 2h;j) 1,(7=2h,)k

J
—i(j — 2h;)k R'3 (j_an, k0 R =0,...,P;
Thus the way to solve the formulated prq})lem is the following: first we look for

j .
a solution f3(;_z; )k (2) of the equation (16) and after that by its help we determine
i 4
Y(j-2n,) () and &(;_n, e (2) from (92) and (93)-
We shall consider the case when hj = 0 (the other cases are investigated simi-

larly).
From the equalities (10)-(12), (17), (13), (15) in a neighbourhood of the pole
z = 0 we obtain

(18) kldﬁ (2) = 2 3[3na=3+ux(m)] éol.jk (2),
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; . J
;h,jk (2) = Z%U(2ﬂ1—3+uk("1))+4—2ﬂx] Roz,jk (2),

; _ j
1113‘1-,: (2) = 2302 =3+ux(m))+2] Ros,jk (2);

] J
(19) ;ij (2) = 23m=3+m(n)] RO, (2).

Moreover
-1

hooe © = -3 Y- {item =34 a(m) +2

=1

l  —1
(G — D@ — 3 + () + 2] 0% (0) ik (0)},

jO k2 j_l ] j—l
(20) R%2¢ (0) = 5365 1(j - 1) @®wa® ik (0),
=1

i ik 3 ! il
RO, (0) = = D12 = 3+ pe(m)) + 25 = 1) o (0) @° -k (0;
l=1

231

@)  Ru0=% Z{{j(znl 34 ()it = (G - DG — 1+ 2im)]

=1

i il
+25% =4 = )G — 1+ 1Im)} @ (0) @° - (0)}-

Let ﬂ;;(z) and ﬂj'k(z) be fundamental solutions of the homogeneous equation
(16) (for h; = 0) in (0,1), where ﬂfk(z) is regular and f},(2) is nonregular in z = 0.
Then (7] in a neighbourhood of z =0

(22) BE(2) = z%[ltun(m)]ﬂ?f(z), Bl (0)#0, n € (o,-;-],
and
(23) Wik(2) = B3 (2)B53(2) = B(2)B5(2) # 0, z €[0,1).

With the Lagrange’s method we build the solution

3 J z J J z Jj
(24) By (2) = Bh(2)(c sk +/ D™k (T)dr) + B5(2)(¢*jk —/ D* i (r)dr),
20 20
5. Cepamka, ku.1-2 .
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: o ki)
f .
c'jg=const, 1=1,2, 2 €(0,1), D¥jx (2)= m B* jk (2),

of the equation (16) (for h; = 0) in (0,1).
From (19), (22) and (23) in a neighbourhood of z = 0 we obtain

J _ J
(25) Dijk (2) = 23 0(2n1=3+uk(n1))=2n1 +12 4,k (n1)) DO*J‘k (2),

where

5 :k (0)85(0)

Dijlc (0) = 1 (O)W (0) k(o) O)ﬂok (0)jk(ny).

From (24) and (25) it follows that the solution éjk (2) — 0 when z — 0 if and only if

] j
k= f:: D% i (7)dr. Let us remark that this integral exists since

1. 1.

2U(2m = 3+ pk(m1)) = 21 + 14 pji(m)] > 37 = 1)(2m1 = 3 + px(m1)) + 2,

and from (15) (because of the regularity of the field j;l) we have
(26) (7= 1)(2ny = 3+ px(m1)) +2> 0,

i.e.

ks L \/(J'—2)[2J—1)(1—n1)-1l
7-1

n,(l - nl)

Thus the solution

] z J .
By (2) = Bl(z)( ik +/ ;(_%ﬂ;"(r)dﬂ_

(27) gals) [ p(f)’;V") Bh(r)dr,

J
c!jx= const, z5 € (0,1), of the equation (16) in (0, 1) has the form

J . J
(28) Bk (2) = 2AU0m-3+ur(m))+4-2m] 8, (2)
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in a neighbourhood of the pole z = 0, where

- J
(29) N pe— U
p1(0)(61 +1)(62 +1)
(29) bua= gli(2m =34 pa(m)) = 2m + 1 psa(m)]

From the equation (92) and (93) for f;; = 0 we have

(30) 33k (2) = -J.—‘,;[iéz.jk ()= Bye (),

j 1 I, N j
ajx (2) = ;,;{Rs.jk (2) = p(2) ¥'jx (2) — P'(2)5kiE Bk (2)— Yk (2)]}-

Then with the help of (18) and (28) in a neighbourhood of z = 0 we obtain

(31) ik (2) = 2AUCm=3+u(m)+a=2ml 0 ()

where

j k j-1
6 1% 0 = ————— {4 - Dllm - 1)+ 1) -2
4ip,(0)(81 +1)(82 +1) =1

! j=1

+(2n1 = 3+ pe(m))[(7 = DI + 25lny = 351+ 21) - jl]} a%k (0) a® ;i (0)

and
; ) J
(33) ¢Jljk ()= 230 (2m =344k (n1))+2) %k (2),
where
) LB o
(34) a%k (0) = 61 (n1) @ik (0) a” ik (0),

4(8) +1)(82 +1) 1=

67

(35) Bt (m) = (2n1 — 3 + ()20 = DIG = 1)(3 = 2m0)(1 = my) + 5 — 1)(2my — 3)

+5(5 = 1) + K im[5(2 = ) + 1 = D1 - 2m)]}
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+4(J = DIG = 1)(3 = 2n1)(1 = ny) + 4G = 1)(1 = my) + 4(1 = ny)(1 - 5?)
+2k%n,[(5 — DI(1 = ny)(2ny = 3)(5 — 2) + §(2 — m)(2 - j)].

<.

3.2. Let j — 2h; = 0. In this case j is even and h; = p; = =. Now the system
(9) gets the form

N

J ] j
a0 (2)+p' B9 (2) =R1p0 (2),

v ) )
(9" Bo (2) =Rap (2),

J j j
P(2) 7’0 (2) = p’ 70 (2) =Ra0 (2).

Formally solving the system, we obtain

. . : i
&0 (2) = /0 (;'ZI,O (r)=p'(7) [;'0 (7))dr+ €2,

] j
(36) Bo (2) =Rz, (2),

2 _ jx Rso()
Yo (2) = p(2)(c0 + A0 dr).

Adding a trivial component of the inf. b. of order j [4,10], we get

J J
(36’) Clo=czo= 0.

From (10)-(13), (15), (17) (9), (36) and (36') it is seen that in a neighbourhood

of the pole z = 0 the solution a() 2h,)k (2), ﬂ(;-zh )k (2), ‘7(, 2k (2), hj =1,...,pj,
have a form analogous to (33), (28), (31) correspondmgly
Passing to a variable p in a neighbourho%d of the pole z = 0, we obtain

j _
agi-am,k (p) = P~ g a®(-am,)k (p),

J ) J
(37) B(i-am )k (p) = plr(m)=nl+an-1 ﬂo(,'-zh,)k (p),

4 . — lva(n)=n)4+2n-1 JAO )
(i-2n,)k (P) = p Y (i-2h,)k (P),
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hJ‘ =0,l,...,pj,

where
2
(38) uk(n)=\/(";2) +k2(n—1)—n;2.

J
4. Investigation of the quantities a%;x (0). In this paragraph we shall
J
consider more precisely the quantites a®;x (0), j = 2,...,m, when 2n, —3+4uk(n1) <0,

[2
i. e. when k < {/—.
n

Lemmal. The following inequalities

2 1 2 2 1
(39) 61 (ny) >0 for n, € (0,5) and 6, (0) =6, (62) = 0.
(40) 81 (n1)+ 8-t (n1) < 0 forn, € (0, %], s=3,4,...,m,
are valid.

Proof. From (35) we obtain directly

(41) 6= 2(1 = 2n1){pe(n1)[1 + na(k? = 1)] + na(k* = 1)(2n1 - 3) - 1},

(42) 31 . 32= 4{pi(ny)[(k* = 1)(—6n2 + 3n,) 4 2ni — 11n, + 6]
+(k? - 1)(—16n3 + 34n} — 15n;) — 2n} + 11n; - 6}.
Evidently ;1 (0) =;1 (3) =31 (0)+ 32 (0) = 0. Let’s denote
by (m) = 21— 2m) f (m), [ (m) =A (m) + p(ma) B (m)
where /21 (ny) = ny(k?)(2n, - 3) - 1, é(nl) =1+ ny(k? - 1). Since for n; € (0,%] we
have A (ny) < 0, B (n1) > 0 and B2 (m)pid(m)— A? (m) = 4nd(k3—1)2(1—ny)k? > 0,

so the inequality (39) is valid.
Analogously we denote

3 3 3 3 3 3
0 (ny)+ 02 (m1) =4 f (m), f(m)=A(n1)+ px(m) B (m),
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where s
A (ny) = (k* = 1)(—16n} + 34n? — 15n;) — 2ny + 110, — 6,

3
B (ny) = (k* = 1)(—=6n? + 3n;) + 2n? — 11n, + 6.
3 3 1 3 3

Now A (n1) < 0, B (ny) > 0 for ny € (0,5] and B? (n1)p?(n1)— A% (m1) = k?n3(1 -

3 3
n)(k*=1) f; (ny), where f, (n1) = (36k? —32)n}+ (8 — 36k?)n] + (9k*+36)n, —18 < 0
for ny € (0, -2-]

Consequently the inequality (40) is valid for s = 3.
With the help of (35) we obtain

(43) 81 (m1)+ famt (m1) = 2(2m0 = 3+ pa(n1)){(3 = 2m)(s = 1)
[20(s = 1)(1 = ny) — 8] + sl(s — 1) + k?sny(s = I)(1 — 2n1) }
+8(s = Di(s—1)(3=2n1)(1 = ny) 4+ 8(1 = ny)[1 = s* + (s = 1)]
+4k*ny(s — D)I(1 = ny)(2ny — 3)(s — 2),

s=2,3,...,m, I= 1"[£] ’

2
Then
(44) 81 (n1)+ 85—t (m1) = P(ny)s® + Q(m1)s + R(m),
where

P(ny) = 2(2ny — 3 + pe(m1)){(3 — 2n1)[21(1 = m1) = 1] + 1 + K> myl(1 - 2ny) }
+4(1 — m){(3 - 2n)l(2 — K*ny) — 2},
Q(n1) = 2(2ny = 3 + px(m1)){(3 = 2m1)[1 = 20(1 = n1)(1 +1)]
1 = K*ny2(1 - 2m) } 4 41(1 = ma)
{2-2(3=2n1)(1 +1) = K*ny (I + 2)(2m1 - 3)},
R(n1) = 4(1 = n1)[(2n1 = 3 + pk(m1))(3 = 2n1)*+
203(3 — 2ny) + 2(1 = 1?) 4 2k*%ny (20, - 3)].

From here we have
P(ny) = 2[C(ny) + p(ny)D(ny)],

where

C(ny) = —8I(k* = 1)nd 4 [181(k* — 1) — 61 4 4]n? + [15] — 9I(k* — 1) — 8]n, + 5 — 9,
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D(nl) = (3 - 2111)[21(1 - nl) - 1] +1+ k2n11(1 - 2711) > 0 for n; € [0, %]

Since C(ny) — +o0 when n; — —o0, C(0) < 0, C(%) <0,C(1)>0,C(ny) - —@
when n; — 400, so C(ny) < 0 for ny € [0,]. We shall show that

(45) P(n,) <0 for n; € (0,%].
We have
D*(ny)ud(m) — C*(my) = [-1612(k? — 1) — 321%(k? — 1)* — 1613(k? — 1)%]ng
+[320(20 + 1)(k* — 1) + 321(1 + 31)(k* — 1)* + 320%(k* - 1)°]n}
+[—321% + 481 — 16 — 4(331% + 121 + 4)(k* - 1)
—41(301 + 24)(k* - 1)? — 200%(k* = 1)%|n}
+[1441% — 2081 + 64 + 4(471% — 221 + 16)(k* - 1)
+41(22 + 200)(k* = 1) + 41%(k* — 1)%]n3
+[—2241% + 3241 — 100 + 2(=761% + 941 — 42)(k? — 1) — (241% 4 241)(k* — 1)*]n}
+[1441% — 2121 + 68 + 2(241* — 421 + 18)(k* — 1)]n; — 321% + 481 — 16.

Then
(46) D?(ny)ug(m) = C*(m1) = 4(m - 1)g(m),
where

(47) g(ny) = [—4(k* — 1) — 813(k? — 1)? — 41%(k? — 1)%|n}

+H(1202 + 81)(K? — 1) + (161> + 81)(k? — 1)? + 41%(k? — 1)*|n}

+[-812 4 120 — 4 — (217 + 41 + 4)(K* — 1) — (1482 + 160)(k* — 1)* = 12(k? = 1)°]n}
+[2812 — 400 + 12 + (2612 — 261 + 12)(k? — 1) + (612 + 61)(k? — 1)?|n?
4+[-281% 4 4112 — 13 + (=120 + 211 — 9)(k* — 1)]ny + 812 — 120 + 4.

We have
g"(ny) = —2400%(k?* — 1)k*n}

+8I(k* = 1)[—61 + 5+ (=361 + 19)k? + 61k*|n, — 481% 4 721 — 24
—(1261% 4 241 + 24)(k* — 1) — (841* + 961)(k* — 1)® — 61%(k* — 1),
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Since the discriminant of the quadratic equation ¢g”'(n;) = 0 is negative, so
9" (n1) < 0 for all n; € (—o0,+00). Then ¢g”(n;) have not more than one real zero.
From ¢”(ny) — —oo when n; — +o0o and ¢g”(1) > 0 it follows that g”(n;) has only
the zero n7 > 1. Consequently ¢’(n;) has not more than two real zeros and g(n;) -

not more than three. From (47) it is seen that g(n;) has the zero nj € (-2-, 1), because
1

g(n1) > 0 for n; <0, 9(5) =4(k* = 1)[-3> + 81 — 4+ I*(k* = 1)] > 0, and ¢(1) < 0.
1

Then in the interval (0, 5) either g(n;) has not zeros, or it has exactly two zeros. We

1
will show that the last is not valid. In fact, if g(n,) has two zeros in (0, 5), so g'(ny)

should have not less than two zeros in (0,7}) and ¢g”(n;) — not less than one zero in
(0,n}), n] < 1. But we proved that g”(n;) has only the zero n > 1.

Thus we have g(n,) > 0 for n; € (0, %] Then from (46) we obtain D?(ny)u2(ny)—

C?*(ny) < 0 for n; € (0, %] From here and from C(n;) < 0, D(ny) > 0 for n; € [0,%]

it follows (45).
We denote
R(ny) = 4(1 = ny)h(ny)

where
h(ny) = (2ny — 3 + pr(n1))(3 = 2ny) 1%+

203(3 — 2ny) + 2(1 = 1%) + 2k%1%ny (2ny - 3).
We shall represent h(n;) in the form

h(n1) = C1(n1) + pr(n1)D1(m1),

where
Ci(ny) = 4%(k* = 1)n? — 61%(k* = 1)ny + 21%ny = 512 +2 < 0,

Di(ny) = B(3-2n,) >0
for n, € (0,-;-]. Then
CH(m1) = D(m)pi(ny) = 4{4*(k* — 1)k*n] — 120%(k* — 1)k?n+

P(k* = 1)(9%k* — 4i* + 4)nf + 202(12 = 1)(3k* = d)ny + 4l =517 + 1} >
4{al'(k* — 1)k*nt + P(k* — 1)(3Pk* — 41? + 4)ni+
20312 — 1)(3k* — 4)ny + 41 = 512 41} > 0.
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Consequently h(n;) < 0 for n; € (0, %] and
(48) R(ny) = 4(1 = ny)h(ny) < 0 for n, € (0, %]
We set y =51 + 5,_1. Then from (44) we have
(49) y = P(n1)s* + Q(n1)s + R(my).

1
Since for fixed n, € (0,3] and [, 1 <[ < [%], (49) is an equation of a parabola and

2 3 3
P(ny) < 0, y(0) = R(n1) < 0, y(2) = 2 61 (n1) > 0, ¥(3) =61 (n1)+ 62 (n1) < 0, then
y(s) =5, (n1)+ 8s—1 (n1) < 0 for s > 3. Thus the lemma 1 is proved.

Directly we obtain:

(50) 51(0)=00nlyforl=landl:s—l;
(51) 51(0)<0for1<l<s——1;
s 1
(52) e (5) = 0 only for s = 2;
(53) él (1) =0 only forl = %;
(54) 81 (1)+ 6, (1) = 0;

(55) (1 +1)(32 +1) = i{[-’(%l -3+ pk(n1)) — 20y +3)2 — pdi(m)} < 0
for n; € (0,%], 2ny — 3+ pk(n1) < 0 and (s — 1)(2ny — 3 4 px(n1)) +2 > 05
(56) (31 +1)|" - = -;- [3(2711 -3 + yk(ﬂl) -— 2ﬂ1 + 3 - p,k(nl)]|n‘=l =0.

0
We shall consider the quantity &jk (0), 7 =2,...,m. From (34) we obtain

’ o7 el e ek b
a’;k (0) = T—',—‘—[(ol +8j-1) @1k (0) a” 1)k (0)+
4(8 +1)(82 +1)
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J J 2 -2 j 3 %
(82 + 8j-2) %2k (0) @®(j_2)x (0) + ...+ 9§0°a; (0) 004,; (0)],

when j is even, and _

J -1

a®k (0) = —————

451 +1)(82 +1)

i oL i1 N i=2
(81 + 8-1) @1k (0) @® j_1)k (0) + (82 + 8-2) 2”2k (0) @ (;—2)k (0)
-1 1
J J o 0
+...+(0‘;ji +0Lt_l) a” -1k (0) a “:‘1)'; (0)],

when j is odd.
Applying the equality (34), we obtain

: (4 oY
(57) a3 (0) = ————— (aolk (0)) ;
4(61 +1)(82 +1)
2 1 3
) 61 <0°1k (0)) 3 3
(58) aou (0) = 61 + 62 :

28 +1)(82 +1) (5 +1)(62 +1)

J

2 1 ’
(-1y~' 6 (a°u= (0))
(59) a% (0) =

45-1(3y +1)(52 +1)

i -1 -1 3 3
[ (61 +6;-1)( 61+ 6 ,_2)..".(01 + 62) + ]
=1 -1 1=2 1-2 2 2 B
(61406 2+1)(61+1)( 6 241)...(61 +1)(62 +1)
]=4,....,m

In the square brackets of the equality (59) it is written the first term only. The
rest terms (they are finite number) have a form analogous to that one of the first — the

numerator of each term contains j — 2 factors of the form 51 + 5.—! (for !l = % this factor

is division by two) and the denominator has j — 2 factors of the form (31 +l)(32 +1),
s=2,...,5, 0l =1,..., [%] Moreover the numerator of any term, except the first,



Infinitesimal bending of higher order 75

2
contains as a factor §; in some positive degree. Thus each term in the square brackets
of the equality (59) has the form

M (m) + () & (m1)
A]ll (n1) + pi(ny) IJVx (n1)

where )i’l (n1) and 1(’ (n1) ( 1{{ 1 (ny) and 1'\’/ 1 (n1)) are polynomials correspondingly of
degree 3(j—1)and 3(j —2) -1 (2(; —2) and 2(; —2) - 1).
From the lemma 1, the equality (52) and the inequality (55) it follows that the

quantity in the square brackets of the equality (59) for n; = 3 has positive value and

it is equal to the value of the first term. For n; € (0, %) the first term and the terms

2
which contain a factor §; in even degree are positive, and all rest terms are negative.

J 1 -0 J 1
Then there exists a number n*;€ [0, 5) such that &j,‘ (0) # 0 for ny € (n*, 5) From

2 3
(57) and (58) it can be seen that n*;=n*;= 0.
Let us remark that a reduction to a common denominator in the square brackets

of the equality (59) in each term there appear ¢; = [‘l] — 1 factors of the form (31

2
+1)(52 +1). Thus the quantity in the square brackets (59) gets the form

;.f (n1) + pe(ny) 1%/' (n1)

b

1::11 (n1) + pr(n1) ;Vl (m1)

; i
where M (n;) and N (n;) are polynomials respectively of degree 3(; — 2) + 2¢; and
i i
3(7 —2) + 2¢; — 1. Since the function M (n;) + pk(ny) N (n;) may have no more than
6(7 — 2) + 4q; zeroes and n; = 0 is at least its simple zero, and n; = 1 is at least its
1
(7 — 24 g;)-tuple zero (see (54) and (56)), so if it has zeroes in the interval (0, 5), they
are not more than 5(j — 2) + 3g¢;.

5. Main results for the fields of infinitesimal bendings in a neigh-
bourhood of the pole. Now we shall consider the question of the regularity of
the found field 2. From (33), (28), (31) it can be seen that the field Zis regular if
2y — 34 px(ny) 2 0,i.e. k> /2

n "
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Let 2ny — 3+ pk(n1) < 0,i.e. k< ‘/% In view of the inequality (26) we have
1
j(2ny — 3+ pr(n1)) +4—2n; > 0 forny € (0,5].

; .
Then from (28), (31) and (33) it can be seen that B(;_ap,)x (0) =‘JY(,-_gh,)k (0) =0, and
&(,-_2;.,);‘ (0) = 0 if the inequality

(60)  j(2n1 — 3+ pk(n1))+2>0ie k> %\/"(j - 1)[';(:1"1" D=1

is true. )
1 J . .
Moreover if n; € (0, 5) is such that the inequality a°(j_2hj)k (0) # 0 is valid at
least for one h; = 0,1,...,p;, then the condition (60) is also necessary for the field %
2 3
to be regular. In the paragraph 4 we have shown: 1) a%; (0) # 0, a®sx (0) # 0 for any

J 1
ny € (0,%) (see (39), (40), (57), (58)); 2) if @i (0) for j > 3 has zeroes n; € (0,5),
so they are not more than 5(j — 2) + 3g;.
We denote

1 [aG-DREi-D-2]
(61) A(j,n) = ;\[ 1 , 722, n>2.

Immediately it is seen that the quantity A(j,n) is an increasing function of j as well
asof n,2 < j,n< 400, A(j,n) < V2n, 'lir_:x A(j,n) = V2n and nlirr;o A(j,n) = oo.
j—+oo -

Thus the following statements are valid:

Theorem 1. The condition
(61) k> A(m,n), m > 2: n>2,

is necessary (ezcept may be for not more than 5(m — 2) + 3( [2] — 1) values of n > 2
for m > 3) and sufficient (for each n > 2 for m > 2) in a neighbourhood of the pole

z = 0 of the surface S, so that the regular fundamental field ;k of inf. b. of the 1-st
order can be eztended to a regular field z of inf. b. of the m-th order.

Corollary 1. In a neighbourhood of the pole z = 0 any regular fundamental

field },,, k > v/2n, of inf. b. of the 1-st order can be eztended to a regular field of inf. b.
of every order.
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Corollary 2. If from the closed surface S it is moved away an arbitrary small
neighbourhood of the pole z = 1, which neighbourhood is bounded by a parallel, then the
remaining part So of the surface S is nonrigid of any order.

Corollary 3. If the pole z = 0 of the surface S is a nonparabolic point, i. e.
n = 2, then in its neighbourhood any regular fundamental field ;k, k> 2, ofinf. b. of
the 1-st order can be extended to a regular field of inf. b. of every order.

Let n > 2 be such that the condition (62) of theorem 1 is necessary. Then the
following statement is valid.

Corollary 4. In a neighbourhood of z = 0 any regular fundamental field ;,
k < V2n, of infh b. of the 1-st order canot be extended to a regular field z of inf. b. of

order m > ————.
n — vg(n)

A summary of the results in this paper is contained in the note [8].
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