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CANONICAL CONNECTIONS AND THEIR CONFORMAL
INVARIANTS ON RIEMANNIAN ALMOST-PRODUCT
MANIFOLDS

M.T.STAIKOVA, K.IL GRIBACHEV

ABSTRACT. On a Riemannian P-manifold there is no complete analogy with the
conformal geometry on a Riemannian manifold. In this paper, we consider a class of
Riemannian almost-product manifolds (including Riemannian P-manifold). The
general conformal group and its special subgroups are determined. It is shown
that the Bochner curvature tensor of the manifold is a conformal invariant. It
is proved that the zero Bochner curvature tensor is an integrability condition of a
geometrical system of partial differential equations and a characterization condition
of a conformally flat manifold, there is a complete analogy with the conformal
geometry on a Riemannian manifold. Similar problems are considered in [1] for a
complex manifold with B-metric.

1. Riemannian almost-product manifold. Let (M, g, P) be 2n-dimensional
Riemannian almost-product manifold, i.e. P is the almost-product structure and g is
the metric on M such that:

Pz =1z, 9(Pz, Py) = g(z,y)

for all vector fields z,y on M. The associated metric § of the manifold is given by
g(z,y) = g(z,P,). In this paper we consider a Riemannian almost-product manifold
for which trP = 0. In this case the metric § is necessarily of signature (n,n).

Further, z,y, z,u will stand for arbitrary differentiable vector fields on M. The
Levi-Civita connection of g will be denoted by V. The tensor field F' of type (0,3)
on the manifold is defined by F(z,y,z) = g((V:P)y,2). This tensor has the following
symmetry properties:

(1) F(z,y,2) = F(z,2,y);

(2) F(z,Py,Pz) = —F(z,y,z).
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A classification of the Riemannian almost-product manifolds with respect to
the tensor F is given in [2].

Let V be the Levi-Civita connection of §. Then, V,y — V.y is a tensor field of
type (1,2) on M. We denote

(3) ®(z,y) = Vzy — Voy.

This is the fundamental tensor of the manifold.
Since V and V are torsion free, ®(z,y) = ®(y,z). The corresponding tensor of
type (0,3) is denoted by the same letter:

®(z,y,2) = 9(®(z,y),2).

Further, z,y, z,u will stand for arbitrary vectors in the tangential space T,M
to M at an arbitrary point p in M. If {&;} (i = 1,2,...,2n) is an arbitrary basis of
T,M and g* are the components of the inverse matrix of g, then the vector field tré
is defined by tr® = g"/®(e;,e;). The form a associated with the tensor F is defined by

a(z) = g F(e;, €j,2).
Using (1), (2) and (3), we obtain the relations between the tensors F' and ®:
(4) ®(z,y,2) = [F(z,y, Pz) + F(y, Pz,z) — F(Pz,z,y)]/2,

(5) F(z,y,2) = ®(z,y, Pz) + ¥(z, z, Py).
The Nijenhuis tensor N of the manifold is given by

N(z,y) = [Pz, Py] + [z,y] - P[Pz,y] - P[z, Py].

By using the covariant derivative (V. P)y of P this tensor is expressed by the equality:
(6) N(z,y) = (V+P)Py - (VyP)Pz + (Vp,P)y — (Vp,P)z.
The associated tensor N with N is defined, by
(M) N(z,y) = (V=P)Py + (VyP)Pz + (Vp,P)y + (Vp,P)z.

Taking into account (4), (5), (6) and (7), we have
(8) 9(N(z,y),2) = 2®(z,z,y) + 2®(z, Pz, Py),
9) N(z,y) = —28(z,y) - 2&(Pz, Py).

Further we have
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Lemma 1. On a Riemannian almost-product manifold the following conditions
are equivalent:

1) ®(z,y) = ®(Pz, Py), 2) ®(Pz,y) = —P¥(z,y), 3) N(z,y)=0.

Proof. Using the property N(Pz,y) = —PN(z,y), from (9) we get

(10) ®(z,y) + ®(Pz, Py) + P®(Pz,y) + P®(z, Py) = 0.

If ®(z,y) = ®(Pz, Py), then (10) implies ®(Pz,y) = — P®(z,y). Hence &(z, Py, Pz) =

—®&(z,y,2). Now, taking into account (8), we find N = 0. So, we proved the implica-

tions 1) = 2) = 3). The implication 2) = 1)is trivial; 3) = 2) follows from (8). O
From (9) one obtains immediately

Lemma 2. On a Riemannian almost-product manifold the following conditions
are equivalent: 1) ®(z,y) = —®(Pz,Py), 2) N(z,y)=0.

In [2] the thirty-six different classes of Riemannian almost-product manifolds
are characterized by conditions for the tensor F. The fundamental classes in the case
trP = 0 are:

wy : F(A,A,f)‘:O, F(f,'hA)=0;

Wy : F(A,B,f)=F(B,A,£), a’ =0, F(fvT'vA)=0;
w3: F(A,B,§)=g(A,B)a"(£)/n, F(§,n,A)=0;
17)42 F({»EvA)=0a F(A7Bv£)=0v

ws: F(&,7m,A) = F(n,§ A), a* =0, F(A, B,£) =0;
We : F(fyﬂv A) e g(f,q)a"(A)/n, F(A, vi) =0,

where PA = A, PB = B, P = —§, Pp = —n, a¥(z) = (a(z) — a(Pz))/2 and
ah(z) = (a(z) + a( P2))/2.
We denote

w) = W3 D we, w2 = W2 D w5, w3z = w; D wy.

From Lemmas 1 and 2 we obtain characteristics of the eight classes with re-
spect to the fundamental tensor ®. Below, we give these two types of characterization
conditions.

I. The class wg of Riemannian P-manifolds:

. F(z,y,2z)=0;
II. &(z,y)=0.
2. The class w;:
. F(z,y,2) = [9(z,y)a(z) + 9(z, 2)a(y) - 9(z, Py)a(Pz) - g(z, Pz)a( Py)]/2n;
1. &(z,y) = [g9(z,y)tr® — g(z, Py)Ptrd]/2n.
3. The class w;:
. F(z,y,Pz)+ F(y,z,Pz)+ F(2,z,Py) =0, a=0, N(z,y)=0, a=0;
II. &(z,y) = ®(Pz,Py), tr® =0, &®(Pz,y)=—-P¥(z,y), trd=0.
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4. The class wa:

. F(z,y,z)+ F(y,z,2) + F(z,z,y) = 0, IV(z,y) =0;
II. &(z,y)=—%(Pz,Py).

5. The class w; @ ws:

I F(s,y,Pz)+ F(y,2,Pz) + F(z,2,Py) =0,  N(z,y)=0;
1. &(z,y)= ®(Pz,Py) &(Pz,y)=—-Pe(z,y).
6. The class wy H ws:
I. a=0;
II. tr®=0.
7. The class wy @ ws:

L F(z,y,2) + F(y,2,2) + F(z,z,y) = 2[9(z,y)a(2) + 9(z, 2)a(y) + 9(y, 2)a(z)
-9(z, Py)a(Pz) — g(z, Pz)a(Py) — g(y, Pz)a(Pz)];
I &(z,y) + ®(Pz, Py) = %[9(z,y)tr® — g(z, Py) Ptrd].

8. The class of Riemannian almost-product manifolds (trP = 0).
No conditions.

4 2. Conformal transformations. Let (M,g,P) be a Riemannian almost-
product manifold. We consider the following conformal transformations of the metric

g:
(11) g = e**(ch2vg + sh2vg),

where u,v are differentiable functions on M. By v = 0, (11) is the usual conformal

change of g. The manifold (M, g, P) is also a Riemannian almost-product manifold and
trP = 0.

Next, let us consider the local conformal transformations.
Theorem 1. Let (M,g,P) be a wy-manifold with form a and (M,g, P) be

conformally related to (M, g, P) by a transformation (11). Then (M,g, P) is a w;-
manifold with form &, so that

(12) a=a+2n(duo P — dv).

Proof. -Let V and V be the Levi-Civita connections of g and §. Then

g(vty__ V:y,2)= "h‘h’[F(z’ v,2) + F(y,2,z) - F(z,z, y)]/4
—sh?2v[F(z,y, Pz) + F(y, Pz,z) — F(Pz,z,y)]/2

(13)  +du(z)g(y, 2) + du(y)g(z, 2) + dv(z)g(y, Pz) + dv(y)9(z, P2)
+9(z,y)[ch?2vdu(z) + sh*2vdv(Pz) + shdvdu(Pz)/2 — shdvdv(z)/2)
+9(z, Py)[—ch*2vdv(z) + sh?*2vdu(Pz) — shdvdu(z)/2 + shdvdv(Pz)/2).
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Let F(z,y,z) = §((VzP)y, z). From (13) we obtain

2F(z,y,2) = 2e*™ch2vF(z,y, z) + e**sh2v[F(Py, z, z)
(14) _F(y’ Pz’z) - F(Z, z, Py) + F‘(Pz,z’ y)] + w(y)g(z, Z)
+w(2)9(z,y) - w(Py)g(z, Pz) — w(Pz)g(z, Py),

where w = d(e?“ch2v o P) — d(e*“sh2v).
Now, let (M, g, P) be a wy-manifold. Taking into account the form of F, from
(14) we get

F(z,y,2) = [9(z,9)a(2) + §(2, 2)a(y) - (=, Py)a(Pz) — §(z, Pz)a( Py)]/2n,

where @ = a + 2n(du o P — dv) which completes the proof. 0O

Remark. Formulas (12), (13) and (14) are valid for arbitrary Riemannian
almost-product manifolds.

Class w, is closed with respect to the conformal transformation according to
this theorem.

Corollary 1. Let (M,g,P) be a P-manifold. Every Riemannian almost-
product manifold (M, g, P) conformally equivalent to (M, g, P) by a transformation
(11) is @ wy-manifold of the form & = 2n(duo P — dv).

Corollary 2. Let (M,g,P) be a P-manifold. Every Riemannian almost-
product manifold (M, g, P) conformally equivalent to (M,g, P) by a transformation
g = eg is a wy-manifold of a closed form & = 2ndu o P.

Let (M, g, P) be a wy-manifold. A differentiable function u on M is said to be
P-pluriharmonic function if the form duo P is closed. The differentiable function (u,v)
on M is said to be P-holomorphic function, if duo P = dv (du = dv o P).

Next we consider the following special conformal changes of metric g:

a) Conformal transformations of type I:

g= e2ug’

where u is a P-pluriharmonic function on M.
b) Conformal transformations of type II:

g = e®*(ch2vg + sh2vj),

where (u,v) is a P-holomorphic function on M.
c) Conformal transformations of type III:

g = e™(ch2vg + sh2vj),

where u and v are P-pluriharmonic functions (duo P # dv) on M.
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Corollary 3. Let (M, g, P) be a wy-manifold of form a. Then every Rieman-
nian almost-product manifold (M, g, P) conformally equivalent to (M, g, P) becomes a
wy-manifold of the same form a by a transformation of type II.

Definition. A w,-manifold (M, g, P) of form a is said to be in class CFo if
both forms a and a o P are closed.

Corollary 4. Class C P, is closed with respect to conformal transformations of
type I, II or III.

Theorem 2. Let (M, g, P) be a wy-manifold. The manifold is in class CPh iff
it is conformally equivalent to a P-manifold by a transformation of type I or IIL

Proof. Let (M, g, P) be a wy-manifold of form a. Ifit is conformally equivalent
to a P-manifold from Theorem 1 we may obtain a = 2ndu o P (a = 2n(du o P — dv))
by a conformal transformation of type I (type III). Hence, da = d(a o P) = 0.

For the converse (a and ao P are closed), we solve locally the equation ao P =
2ndu (a = 2n(duo P — dv), a o P = 2n(du — dv o P)) and find a P-pluriharmonic
function u (P-pluriharmonic functions u and v). The conformal transformation e~ g
(e~2%(ch2vg — sh2v§)) gives rise to a P-manifold. O

3. Canonical connection on a w;-manifold. Let (M, g, P) be a Riemannian
almost-product manifold. A linear connection D on (M,g, P) is said to be natural if
DP =0 and Dg = 0 (or Dg = 0 and D§ = 0). The natural connection D with torsion
tensor T is said to be canonical if

T(z,y,2)+ T(y, z,z) + T(Pz,y, Pz) +T(y, Pz, Pz) =0,
where T(z,y,z) = ¢(T(z,v),2) and T(z,y) = Dzy — Dyz — [z, y].

Theorem A. [4] There ezists a unique canonical connection on a Riemannian
almost-product manifold.
If V is the Levi-Civita connection on (M, g, P), then

(15) 9(D2y — Vo, 2) = [8(z,y,2) - 28(2,2,¥) - ®(z, Py, Pz)]/4
T(z,y,2) = [®(y, 2,z) — ®(z,z,y) — ®(y, Pz, Pz) + &(Pz,z, Py)]/4.

Thus, if (M, g, P) is a wy-manifold, then its canonical connection D is given by

(16) D,y = V.y + [9(z,y) PO — g(Pz,y)0 + a(y) Pz — a Py)z]/4n,

where ¢(©,z) = a(z). From this it follows that the torsion tensor T' of D is of the
form:

T(z,y) = [a(Pz)y - a(z)Py + a(y) Pz - a( Py)z]/4n.
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For arbitrary vector fields z and y, a(PT(z,y)) = 0.
Further, R will stand for the curvature tensor of V, i.e.

R(z,¥)z=V:Vyz -V, V2 -V, 2.
The corresponding tensor of type (0,4) is denoted by the same letter and it is given by
R(z,y,2,u) = g(R(z,y)z,u).

A tensor L of type (0,4) is said to be a curvature-like tensor if it satisfies the
conditions:

i) L(z,y,2,u) = —L(y,z,z,u);

“) L(.’L‘, Y2, u) + L(y’zv z, u) + L(Zv z, yvu) =05

iii) L(z,y,2,u) = —L(z,y,u, z).

Let S be a tensor of type (0,2). We consider the following tensors

v(S)(z,y,2z,u) = g(y,2)S(z,u) - g(z,2)5(y, u)
+S(yv z)g(z, ‘ll) - S(I, Z)!I(!I, u),

va(S)(z,y,2,u) = g(y, Pz)S(z, Pu) - g(z, Pz)S(y, Pu)
+5(y, P2)g(z, Pu) - S(z, Pz)g(y, Pu).
We have

Lemma 3. Let S be a tensor of type (0,2). Then
a) Y1(S) is a curvature-like tensor iff S(z,y) = S(y,z),
b) ¥2(S) is a curvature-like tensor iff S(z, Py) = S(y, Pz).

Tensors 7y, m and 73 are defined as follows:
™ = ¥i(9)/2, ™2 =v29)/2, 7= 91(3) = ¥2(3)-
Tensors 7y 4+ 72 and 73 are curvature-like tensors and they satisfy the conditions

(’l + 72)(11 Y, z,u) = (”l + ’2)(1:’ Y, sz P“)s 13(1, Y, 2, u) = 1’3(2, v, sz Pu)

Lemma 4. Let (M,g,P) be a wy-manifold. If R and K are the curvature
tensors of V and D, respectively, then

K =R+ 9(5') - ¥2(5") - a(®)(m + 72)/4n + a(P|O)n3/4n,

where

5'(z,y) = (Vza) Py + [a(z)a(y) + a(Pz)a(Py)])/4n + a((V:P)y),
5"(z,y) = (Vza)Py + [a(z)a(y) + a(Pz)a( Py)]/4n.
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The statement follows by a direct computation taking into account (16).

Lemma 5. Let (M, g, P) be a wy-manifold of form a and Levi-Civita connec-
tion V. Then

a) a is closed iff (V. a)y = (Vya)z;

b)a o P is closed iff (V.a)Py = (Vya)Pz.

Theorem 3. Let (M,g, P) be a C Py-manifold with canonical connection D.
If K is the curvature tensor of D, then K is a curvature-like tensor ard satisfies the
condition

(17) K(z,y,2z,u) = K(z,y, Pz, Pu).

Proof. Using Lemma 5, we obtain that tensors S’ and S” in Lemma 4 satisfy
the conditions of Lemma 3. Thus, Lemma 4 implies that K is a curvature-like tensor.
From the condition DP = 0 it follows immediately (17). O

4. Conformal invariants. In this section we consider conformal transforma-
tions of type I and II of the metric and we find the groups of conformal transformations
of the canonical connection. The Bochner curvature tensor of the canonical connection
on a C Py-manifold is shown to be a conformal invariant of type I, II or III.

Lemma 6. Let (M,g,P) and (M, g, P) be conformally related w-manifolds
by a transformation § = €**(ch2vg + sh2v§) with differentiable functions u, v. The
corresponding canonical connections D and D are related as follows:

2D,y = 2D.y+ 2du(z)y + 2dv(z)Py
(18) +[du(y) + dv(Dy))z + [du(Py) + dv(y)| Pz
—9(z,y)(gradu + Pgradv) — g(z, Py)(Pgradu + gradv).

The proof is straightforward calculation from formulas (13) and (16).

The transformations § = €*“(ch2vg + sh2vg) with differentiable functions u, v
on M form the (general) conformal group on M and give rise to the conformal group
of transformations of the canonical connection on M. The formula (18) is an analytic
expression of a conformal transformation D [4]..

Lemma 6 implies:

Corollary 5. Let (M, g, P) and (M, g, P) be conformally related wl-mamfolds
by transformation (11) and let D, D be their canonical connections.

If transformation (11) is of type I, then

(19) 2D,y = 2D,y + 20(z)y + o(y)z + o( Py) Pz — g(z,y)S - g(z, Py)PS.
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If transformation (11) is of type II, then
(20) D:y = Dzy + o(z)y + o(y)z + o(Pz)Py + o(Py)Pz — g(z,y)S - g(z, Py)PS.

Here 0 = du, ¢(S,z) = du(z).

Formulas (19) and (20) express analytically the conformal groups of conformal
transformations of the canonical connection of type I and II, respectively.

Using (19) and (20) we obtain

Lemma 7. Let (M,g,P) and_(M,g, P) be conformally related C Py-manifolds
by transformation of type I. If K and K are the curvature tensors of the corresponding
canonical connections, then

(21) K = K — ¢1(L) - ¥(L),

where

L(z,y) = (V:0)y-[o(z)o(y)+ o(Pz)o(Py) - g(z,y)o(S)/2 - g(z, Py)o(PS)/2]/2
+(9(z, Py)a(S) — g(z,y)a(PS)]/4n

and a is of the form (M, g, P).

Lemma 8. Let (M,g,P) and (_M, g, P) be conformally related C Py-manifolds
by transformation of type II. If K and K are the curvature tensors of the corresponding
canonical connections, then

(22) K = K — 1(L) - ¥2(L),

where

L(z,y) = (Vz(y) - a(z)o(y) — o(Pz)o(Py) + g(z,y)o(S)/2 + 9(z, Py)a(PS)/2]
+[g(z, Py)a(S) - g(z,y)a(PS))/4n.

Let (M, g, P) be an arbitrary Riemannian almost-product manifold and {e;, ez,...,€2,}
be a basis of T,M, p € M. If K is a curvature-like tensor and if it satisfies condition
(17), then the Ricci tensor p and the scalar curvatures 7 and 7 of K are given by

P(z,y) = 9‘jK(ei»$»y,€j)» T= gijP(Ci,ej), T= gijﬁ(ei’ ej)'
The associated Bochner curvature tensor B(K) is defined by

(23) B(K) =K — (%1 + ¥2)(p)/2(n = 2) + [r(m1 + 72) + 73] /4(n — 1)(n - 2).

Theorem 4. Let (M,g, P) be a CPy-manifold with canonical connection D
and corresponding curvature tensor K. Then the Bochner curvature tensor B(K) is a
conformal invariant of type I or II.
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Proof. Let (M,g,P) be conformally related to (M, g, P) by transformation
(11) of type I or II. If D and K are the canonical connection and its curvature tensor
of (M, g, P), then (21) and (22) imply

L=(p-p)/2An—-2)-(rg+ 75— 73— 79)/8(n—1)(n-2),

where 5, 7, 7 are the associated Ricci tensor and the scalar curvatures of K. Substi-
tuting L into (21), respectively (22), and taking into account (23), we obtain

(24) B(K) = e*“B(K),
respectively
(24) B(K) = e**[ch2vB(K) + sh2vB(K)],

where K is the curvature tensor, given by K(z,y,2z,u) = K(z,y,z,Pu). Thus, if
B(K) and B(K) are the corresponding tensors of type (1,3), then (24) and (24’) imply
B(K)=B(K). O

5. The Bochner curvature tensor and integrability conditions. In this
section we show that the zero Bochner curvature tensor of the canonical connection is
an integrability condition for a system of PDE describing conformally flat (of type I,
I or IIT) C Py-manifolds.

Theorem B. [3]. Let the Riemannian P-manifolds (M,g,P) and (M,g, P)
(dimM = 2n > 8) be conformally related by a transformation of type II. The connection
V of § is flat iff B(R) = 0.

Theorem 5. Let (M,g,P) (dimM > 8) be a P-manifold and vanishing
Bochner curvature tensor of the Levi-Civita connection V. Then (M,g,P) is con-
formally related to a C Py-manifold (M, g, P) by transformation of type I so that the
canonical connection D of (M, g, P) is flat.

Proof. Let § = e*g, with an unknown P-pluriharmonic function u on M.
Using (21) we obtain that the canonical connection D on (M, g, P) is flat iff

(25) (Veol = [0(2)av) + o(Pz)a(Py) - 9(z,4)0(5)/2 - (2, Py)o(P5)/2)/2
= p(z,y)/(n - 2) = [r9(z,v) + Tg(z, Py)}/4(n - 1)(n - 2),

where ¢ = du, g(S,z) = du(z), p, 7,7 are the Ricci tensor and the scalar curvatures of
the curvature tensor R of V.

Now we shall show B(R) = 0 is an integrability condition for the system (25).
Denoting the right hand side of (25) by L(z,y), we have L(z,y) = L(y,z) and L(z,y) =
L(Pz, Py). Applying the Ricci identity

(VeVy0)z - (VyV:0)2 = —0(R(2,9)2)
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to the left hand side of (25) and using B(R) = 0, we find that the system is integrable
iff
(26) (VzL)(y,2) = (VyL)(z, 2).

To prove (26) we use the equality R = (¥, + v¥2)(L) and apply the second
Bianchi identity for R. After a contraction we obtain

(2n = 5)[VpzL)(Py, z) = (VpyL)(Pz, 2)]- [(VzL)(y,2) = (VyL)(2,2)] = 0
and by the substitution z — Pz, y — Py
(2n = 5)[(V2L)(y,2) = (VyL)(z,2)] = [(VPzL)(Py,2) = (VpyL)(Pz,2)] = 0.
From the last equalities it follows that
(n=2)(n = 3)[(VzL)(y,2) - (V,L)(z,2)] = 0.

Hence (26) is a consequence of B(R) = 0 and (25) is integrable. It follows
immediately that every solution u (du = o) of (25) is a P-pluriharmonic function. The
change § = €*“g (u - a solution of (25)) gives rise to a C Py-manifold (M, g, P) with flat
canonical connection D and this completes the proof. O

If 2n = 6 and B(R) = 0, the integrability condition (26) is not a consequence
of B(R) = 0. In this case B(R) = 0 implies only

(VzL)(y,2) = (VyL)(2,2) = (Vp:L)(Py,2) - (VpyL)(Pz, 2).

Theorem 6. Let (M,g,P) (dimM > 8) be a C Py-manifold with canonicai
connection D and vanishing Bochner curvature tensor of D. Then there erist P-
plurtharmonic functions u and v on M, such that the conformal transformation (11)
of type III gives rise to a P-manifold (M, g, P) with flat Levi-Civita connection V.

Proof. Let a be the form of (M, g, P). Solving (locally) the equation du’ =
@/2n, we obtain a Riemannian P-manifold (M, ¢’, P) with ¢’ = e=?*'g. From Theorem
4 it follows that the Bochner curvature tensor B(R’) = 0, R’ being the curvature
tensor of the Levi-Civita connection V'’ of (M, g’, P). Let the conformal transformation
g = " (ch2vg’ + sh2v§’) be of type Il with unknown function u” and v. Applying
Theorem B we obtain that the Riemannian P-manifold (M, g, P) is of flat Levi-Civita
connection V. It follows immediately that the function u = u” —u’ is a P-pluriharmonic
function. Then the conformal transformation § = e?%(ch2vg + sh2vg) is of type III and
the manifold (M, g, P) is of flat Levi-Civita connection V. O

Applying Theorems 2, 4 and Corollary 3, we check

Theorem 7. Let (M,g,P) (dimM > 8) be a C Py-manifold with canonical
connection D and vanishing Bochner curvature tensor of D. Then, (M, g, P) is con-
formally related to a C Py-manifold (M, g, P) by a conformal transformation of type II,
so that the canonical connection D of (M, §, P) is flat.
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