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COMPLETE CLASSIFICATION OF CONVEX CONES AND
SKELETONS OF DIMENSIONS SEVEN UP TO THIRTEEN

G.E.DIMOU

1. Introduction. Let D be a homogeneous bounded domain in C*. It is known
that a Siegel domain genus I or II corresponds to any such domain. There is also one-
to-one bijection between j-algebras (N-algebras and T-algebras) and Siegel domains
D(V, F) of genus I or genus II. The classification of Siegel domains genus I is reduced
to the study of convex cones V', which are related to skeletons, because there is one-to-
one bijection between convex cones and skeletons Sx. A homogeneous Siegel domain
D(V, F) of genus I or genus II is irreducible if and only if the associated homogeneous
convex cone V is irreducible.

The aim of the present paper is to classify the convex cones of dimension seven
up to thirteen.

The paper contains four parts. The first part is the introduction.

The second part deals with the general theory of convex cones and definitions
of Siegel domains genus I.

The third part deals with the general theory of the graphic of skeletons.

In the fourth part we give the table of the convex cones and their graphic
skeletons of dimension seven up to thirteen.

The classification of cones and skeletons of dimension seven up to thirteen
has been studied in [1], [4], [5]. But this classification is not complete. We give a
complete classification of these cones and skeletons. This classification contains 29
non-isomorphic cases.

2. Convex cones.

Definition 2.1. A subset V in n-dimensional Fuclidean real space R" is
called a cone, if together with a point of V it contains the half line connecting it to the
origin.

- Definition 2.2. The set
D(V)={Z=X+iY€C"|XeR", YeV}
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is called Siegel domain genus I.

It has been proved that any Siegel domain S = D(V) of genus I is analytically
equivalent to a bounded domain. Using the fact that cone V does not comprise a whole
line, we can prove the existence of a coordinate system (y1, ¥2, ... ¥n) in R" such that
V lies inside the octant y; > 0, y2 > 0, ... yn > 0. Then it follows S is included in
the product of n-discs.

The subset of V denoted by Si and defined by Sx = {Z = X} is called skeleton
of S.

3. Graphic representation of skeletons. We consider a skeleton Si in R"
and a regular n-polygon in R?. On each of its vertices we construct a tine circle. By a
regular 1-polygon (resp. 2-polygon) we mean a point (resp. a line segment).

Let us number these circles counterclockwise starting from the vertex at the
upper left corner. The i-th circle is called the i-th vertex or simply i-vertex. Some of
these circles may be joined by line segments. By notation i ~ j (resp. i # j) we mean
that vertices ¢ and j are joined (resp. not joined) by line segment.

For the connection of two vertices the following statements hold:

To each line segment ¢j that joins two verices i and j we attach a positive
integer n;; with the property: if i < j < k, i ~ j and j ~ k, then max(n;;, k) < Nik.
The above construction by shape is called graphic skeleton of type I.

4. Theorem 4.1. The complete classification of the convez cones and their
graphic skeletons are given in the following table:
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In the tablea; € R,1=1,2,3,4,z; € R, j =1,2,3,4,5; 2 € C, C(z1,23,23) is
a function of the variables z,,z,,z3 and the symbol

{ matrix } >0

means that the corresponding Hermitian matrix has positive characteristic values.

Sketch of the proof. We form the set of all Hermitian and the set of all symmetric
matrices of three parameters which cover the dimensions from seven up to nine. Such
a matrix represents a convex cone if and only if their submatrices have determinant
of the form cone. After that we form the graphic skeletons. This procedure gives a
method for the complete classification.
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