Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica

Bulgariacae mathematicae
publicationes

Cepauka

beiirapcko MareMaTu4ecKo
CIIKCaHue

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on
Serdica Bulgaricae Mathematicae Publicationes
and its new series Serdica Mathematical Journal
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg



SERDICA — Bulgaricae
mathematicae publicationes

18 (1992) 215-223

BACKWARD ERROR ANALYSIS OF LU-DECOMPOSITION FOR
PENTADIAGONAL MATRICES

P.Y.YALAMOV

ABSTRACT. Systems with pentadiagonal matrices are often met in practice when
solving differential equations numerically. This paper uses the method proposed in
[3] to study the round-off error propagation of LU-decomposition for linear systems
with pentadiagonal matrices. The results is that the equivalent perturbations of
the inputs are relatively small for well-conditioned problems. Backward analysis
needs much less computational time than forward analysis if we want to estimate
the round-off errors numerically.

1. Introduction. Linear systems with pentadiagonal matrices arise often when
solving differential equations numerically. In this paper we use the method proposed in
[3] to study the LU-decomposition for linear systems with pentadiagonal matrices with
respect to round-off errors. The method is based on the use of the dependence graph
of the algorithm and its parallel forms (see [2]). The notion of equivalent pertubation
is introduced for every piece of data (input, intermediate and output) in contrast to
the generally used backward analysis (see [4]). Then a linear system

(1) Be =1

with respect to the vector of equivalent perturbations ¢ is derived, and the solution
of this system gives a first order approximation of the equivalent perturbations. Here
matrix B consists of the Frechet-derivatives of all the operations and of elements which
are equal either to 0 or to —1. 7 is the vector of all local absolute round-off errors. Giving
values to the equivalent perturbations of the output data we can estimate successively,
level by level (see (2], [3]), all the other equivalent perturbations. We are interested in
the equivalent perturbations of the input data which are the results of the backward
analysis.

The estimates of backward analysis can be written in a simple analytical form,
while the estimates of forward analysis depend strongly on intermediate results. Be-
sides, backward analysis needs much less operations when the estimates are defined
numerically.
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2. Description of the LU-decomposition. The algorithm is described in
[1]. Let us consider the system

(2) Az = f
with
cp dy e f
by c2 d2 e fa
A= | ® by c3 d3 e3 L f=

Qg buoy cnor day
an by Cn fn

We look for a solution of the following kind:

T = iTip1 + BiTiy2 + 7, t=1,...,n -2
(3) Tp-1 = Qp_1ZTp + In-1,

In = In-
Let us note that a;,/3;,7; can be derived from the first equation of system (2), and
then using the representation (3) for z;_3,z,_; we get the coefficients a;, 3;, v; from the
i-th equation as follows:

Ay = o, ay=—-d /Ay, = —-e1/A, 1= fHi]A,

(4) Az = cr+ b, ay = —(dy + b281)/ A2, B2 = —e3/ Ay,
Y2 = (fa—bam)/A2,
A; = ci+(aiai—g +bi)ai_y + a;fi-a,
a; = —[di+ (aiai—z2 + b;)Bi—1]/ A,

(5) Bi = -—e/A,

i = [fi = (@iai—2 + bi)yic1 — aivi-2)/ A,
t = 1,...,n,
where e,_; = e, = d,, = 0. Equalities (4) are called forward elimination, and equalities

(3)-back substitution.. Actually, (3) and (4,5) realize the following decomposition A =
LU, where

[ A] ] [ 1 - —ﬂl 0 ]
bz A, 0 1 —a; -5
L= as 030'1 +b3 Az U= . .
. 0 1 Q-
0 1
L a,, Q,0y,_2 + bn Anj L J
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From (4,5) we obtain the triangular system
(6) Ue=7, 7=L7",

where ¥ = (71,...,7x)7, and then the recurrence relations (3) produce the solution z.
The round-off error analysis is done under the assumptions that matrix A is
diagonally dominant, i.e.

(7) lesl > Jas| + 6] + |di| + |es], i=1,...,n,

foray =by=a;=¢€n_1 =€, = d,_1 = 0, and that at least for one i the inequality is
strict. Under these assumptions it can be shown that the algorithm is correct (see [1])
and that the following estimate is valid:

(8) lei] +18il <1, i=1,...,n.

3. Backward analysis of the back substitution. We shall do the backward
analysis of the forward elimination and the back substitution separately. Let us consider
the back substitution at first. The dependence graph of this part of the algorithm is
given in fig. 1, where ¢; = (a;,f3i,7:). In each vertex only one term of the recurrence
relation (3) is computed. The vectors g; are inputs for the back substitution. Now using
the method described in [3] we see that matrix B from (1) has the following structure:

- -

| 0 Doan-y -1
0
(9) B = .i"_] iﬂ 1 5"-2 Qpn-2 -1
0 0
L i i3 1 : B @ -1

The wave denotes that the elements are computed with round-off errors. The size of
matrix B is (n — 1) X (4n — 4) and it has a full rank. System (1) has a set of solutions
and we have a choice.

Using floating-point arithmetic operations we assume that fl(z+y) = (z+y)(1+
p), for + € {+,—,%,/}, where |p| < 0.5p~**! pis the radix of the number system, and
t is the number of mantissa digits (see [4]).

Further on the lower indices of ¢ and 7 denote the corresponding equivalent
perturbations and absolute round-off errors. Then neglecting terms of second order in
p~'*1 simple round-off analysis gives that

Tews = Gnaa(py" ™) 4+ p5"7) 4 Faca {7,
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Nz, = d.-im(pﬁ“ + pg) + Py)) + 5.‘5.‘+1(Pg‘) (‘) + Py )) + "/:P )
PV <0.5p7*, i=n-2,...1, j=1,..,4.

Now we choose the following solution of system (1) with matrix (9) :

€z, =0, 1=mn,...,1, :
Ean—l - a"'l(pln 1) + (n 1)) E'Yn—l - 7""‘1pgn 1)’
(10) Ea; - a'(p(') +p( 1) +p( ))

= Bi(py) + o8 + 1),
--7.p4’,|p§’|<05p—‘+‘ i=n—1,..,1, j=1,..4

Besides, let us have ¢, = 0. From (10) we obtain the estimates:

Evn = 0’
lean_,| < I&n-—l|P_t+lyle‘v..-1| <0.5p7t1,
(11) lea;] < 1.5]@|p~*+1,

lea,] < 1.518:ip~**,
Ie‘hl S0.5|"7.'|p"+', t=n-2,...,1.

So, the backward analysis of the back substitution gives very good estimates of both
absolute and relative equivalent perturbations.

4. Backward analysis of the forward elimination. The dependence graph
of this part of the algorithm is given in fig. 2. There operations (4) are placed in the
first two vertices, and the operation (5) is placed in every other vertex in the graph,
where the vectors r; = (a;,b;,d,-,e.-,c;,f;)T are the inputs. In this case matrix B has
the following structure:

[ Hy -1
0
G, H, -1
B = F3 0 Gz Hz -1 ,
0
L Fn 0 Gn Hn _l_

where F;, G;, H; are Frechet-derivatives of the opera.tlons in every vertex of the
graph with respect to the vectors (&;— 2, Bi- 3,7.._3) , (@ 1, Bi- 1 ¥i- 1)7‘ and r;. Blocks
F;,G;, H; are given below:

—a Bi-1 - @& —a; 0
(12) F, = A—' - =B 0 |,
LAt aay - -1
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- -a; 1 0
Gy + b; y
(13) G.'=a—(ﬂ72'i— -B; 0 0 y
A -5 0 -1
oL o0 B0
93, 9B o =1 =B
I ol v

Here we assume that A # 0, i = 2,...,n. The derivatives with respect to a; and b;
are not necessary in the further investigation, so, they are not written explicitly. The
equivalent perturbations €q,,€p,,¢-, are already defined in Section 2. For this reason
and from the structure of matrix B in this section it is clear that we have to solve a
system with the block diagonal matrix diag { H;}/-, in order to obtain the equivalent
perturbations of the vectors r;. Here we consider only the i-th block equation. It looks
as follows:

(14) Higr, = ng, — Figg_, — Gigqi_, + €, .

Neglecting terms of second order in p~t*! simple round-off error analysis gives the
estimates of 7, = (7, 78, T )T

] < (il + 2.5|aii2Bica] + 210Bi-a)IAT P~ + |&lIAT Imail,

Ing.| < 0.5el|A7 P~ + 1Bil A |Imals
(15)

7] < (1.5]fil + 3aiFi1Gi-2| + 2.5]bi¥i-|

+1.5]a5i-2)IAT [P + 1%IIAT Imal,
where
Ina.] < (leil + 2.5]ai@io1 &iza| + 2|bidica| + |aiBiza|)p~* .
System (14) has a set of solutions. Let us choose ¢4, = €3, = €, = 0. Then the
rest of the unknown €7, = (€4;,€e,1€ 4, )T are defined uniquely:
5:. = Ai('k-‘ - Figgi_, — Giggy t+ qu-).

In all the following estimates neglecting terms of second order in p~t*! we can consider
that

(16) |&; + il < 1.
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Now from (11), (12), (13) and (15) after some computations one can obtain the following
estimates:

lleallco < max(5lei| + |dil + 14]ai| + 10]bi| + 0.5]ei)p~"*! <

17 -
(17) < 0.5]|Allop™1,

lleslloo < max[1.5] il + (13]ail + 7]bsl + L5le)lIFlleo)p™**" <
< (1.5] flloo + 7-25| Allooll 710 )™ **1.

The last estimate depends on the intermediate data 4. Two other estimates
follow from (18) and (6) depending only on input or output data:
leslloo < (201 flloo + 11.5]|Alloo||Z]|o0)p™**?,

lleslloo < (24 11.5]| Allool| A7 loo Il fllocp™ .

Here we use the fact that ||U|lc < 2 and L™! = UA~'. The estimates thus obtained
depend only on the condition of A and do not depend explicitly on n. This shows that
the algorithm is stable and backward analysis depends only on the condition of problem

(2).

(18):

(18)

In the next section two other estimates are used. They follow from (17) and

(19)|lealloo < (5 max|c;| + max |di] + 14 max|a;| + 10 max |b;| + 0.5 max |e;])p~*+",
1] 1] ] 1 1]

(20) leslloo < [1.5max|fil + (13 max|a;| + 7 max|bi + 1.5 max|e;|)|[]leo]p™**".

Let us note that forward analysis can be obtained from system (1) using the rep-
resentations of the blocks F}, G;, H;, but it depends on the quantities |a;|/|A;|, |aiai—2+
b;|/|A;|, which cannot be estimated analytically so easily. Besides, backward analysis
uses (7n — 6) comparisons and 16 multiplications and additions in (19) and (20), while
forward analysis would use 0(n) arithmetic operations.

5. Numerical results. The experiments are realized on PC/AT where p~*+! ~
10~7. The algorithm is tested with matrices of order n = 20, 50, 100, 200, 500, 1000, 2000,
the coefficients of which are given in Table 1. The systems with matrices from M2(n)
are solved for p = 0.001,0.12,0.25,0.5,1,2,4, 100. The right part f is chosen so, that the
exact solution is z = (1,...,1)7 in all examples. The estimates of the equivalent per-
turbations EP = ||€a|leo +||€ f||co from (19) and (20) and the quantity ERR = ||z —Z||o
are compared in all the tests, where Z is the solution of (2) with round-off errors and
z is the exact solution.

For the class M 1(n) we have EP < 6 x 107 for all n and ERR < 107%,107¢,
1.9% 1078, 1.3x10°%,6.9x 107%, 7.8 x 107%, 2.9 x 10~* for the corresponding n.
Small EP shows that the algorithm is stable. The norm ||A~"|| is growing with n.
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a; b.' Cs d.‘ €
Mi(n) [ -1] -1 4 -1 -1
M2(n) [ —p | -p 1+4p -p__|-p
M3(5) | -1] -1 2,i=1 -10%-2 [ -1
102,i =2
3+10%-2i=3,4 Table 1
2,i=5
M4(10) [ -1 | -1 2,i=1 —10-T [ -1
12,i=2
3+410-4i=3,...,9
2,i=10

Table 2 shows the results for the matrices of M2(n). The quantities EP and

ERR rarely change with the growth of n.

3 EP ERR

0.001 | 5.72x 107 | 1.19 x 107

012 |1.29x10-° | 1.19x 107

025 | 2.06x10-° | 1.19 x 107

05 T356x10°° [ Liox10-7] 1aple?
I 6.55x 10-° | 1.19 x 107

2 1.25x 107> | 2.38 x 10~

3 2.45% 105 | 1.19 x 10~°

The results for M2(n) when p = 100 are given separately in Table 3 because
ERR changes for different n. Although these matrices are ill-conditioned (||A™"[|cc >
108) Table 3 shows that the equivalent perturbations describe the behavior of the

round-off error quite well.

n EP ERR

20 6x107%]1.19x10°°
50 6x107%[262x10"°
100 |[6x1077][2.62x10°°
200 | 6x107%[1.67x10°°
500 | 6x107%]2.34x10°°
1000 | 6 x 10~% | 2.34 x 10~°
2000 | 6 x 107 [ 2.34 x 10~°

Finally for the matrix M3(5) we have that

Table 3

EP <542x 107!, ERR < 3.4 x

10~2, and for the matrix M4(10) we have that EP < 73, ERR < 3. The equivalent
perturbations describe the real situation quite well again. The last two examples also
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show that although matrices M3(5) and M4(10) are diagonally dominant and the
diagonal dominance is strict for one row of these matrices, the result is far away from
the exact solution z. The explanation is that for these matrices the coefficients a;
are approaching 1, the coefficients 3; are approaching 0, because the elements d; are
growing very fast. For this reason we have A, = 0 (A5 = 1.93x 1078, for M3(5), Ao =
1.92 x 10~8, for M4(10)), and 7,, = z, is computed with big round-off error.

P - e Ve e N

A

Gn-1 qn-2 T qQ1

In

Fig. 1.
Dependence graph of the back substitution

T SN NS .

Fig. 2.
Dependence graph of the forward elimination
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