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CALCULUS OF HIGHER ORDER AVERAGED MODULUS OF
SMOOTHNESS IN L»-NORM FOR CONVEX FUNCTIONS OF
HIGHER ORDER

S.GH.GAL

ABSTRACT. Continuing the ideas in [3,4] the averaged moduli of smoothness of
order nin L? norm (1 < p < 00) have been calculated for convex functions of order
n — 1 in this paper.

1. Introduction. The so-called averaged modulus of smoothness (or 7-modulus)
first introduced by Sendov [14] has become a useful tool for giving estimates in a number
of problems, such as quadrature formulae, numerical solutions of differential equations
(see e.g. [15), [5]). T-moduli have been treated in details in [15].

Let

M{a,b] = {f; f is bounded and measurable on [a,b]}.

Definition 1.1 (see e.g. [13]). Let f € M[a,b] and 6 > 0. The averaged
modulus of smoothness (or T-modulus) of order n and step § in LP-norm (1 < p < o0)
is given by

Tn(f; 6) = “wn(fv v6)"P

where || - ||, is the classical LP-norm on [a, b),

wn(f,z;6) = sup{|A}f(t)|;t,t + nh € I,(z,6)}, h€E R,

n

() = Z( " '( ) f(t+ih) and I,(z,6) = [z —né/2,z + né/2]N[a,b)].

1=0

Remark. In Definition 1.1 h is assumed to be > 0. This obviously follows
from the fact that h is < 0, then from t,t + nh € I,(z,§), by denoting h’ = —h > 0,
t' =t+nh=t-nh'€ I,(z,§), we get

t' +nh' =t € I,(z,6) and |A}f(t)| = |A]F(2)].
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A first estimate for the approximation error by positive linear operators in terms
of 7-moduli was given by V.A.Popov in the following way:

Theorem 1.2 (see [7]). Let L : M[a,b] — M|a,b] be a positive linear operator
with the following properties:

L(1)(z) =1, L(t)(z) =z +a(z), L(*)(z)=2"+pB(z), z € [a,b].
Let
a = sup{|8(z) - 2za(z)|;z € [a,B]} < 1.
Then for f € M[a,b] and 1 < p < oo the following estimate holds

If = L(Hllp < Cra(f5Va)y,

where C is an absolute constant < 68.

Remark. Estimates in terms of r-moduli of higher order can be found in
(1,2], [11-13].

We have calculated the uniform moduli of smoothness of higher order for convex
functions of higher order in two recent papers [3,4]. Taking into account this idea we
calculate the higher order T-moduli for convex functions of order n — 1.

2. Calculus of 7-moduli of smoothness. First we need the following.

Definition 2.1 ([9], p.18). Let n be an integer > —1. A function F : [a,b] —
R is called convez (concave) of order n on [a,b] if for any system of distinct points
Zy,...,Tns2 € [a,b] we have

[Z1,..-yZns2; f] 2 0 (< 0 respectively),

where by [z1,...,Tnt2; f] the divided difference of f at zy,...,Z,42 1s denoted.

The set of all convex functions of order n will be denoted by K% [a,b].
The proofs of our main results require the following two lemmas.

Lemma 2.2. For —-co<a<b< oo, §>0 andn € N denote by

I(z,68) = [z — n§/2,z + né/2] N [a,b)].
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Then for all § € [0,(b— a)/n] and all z € [a,b] we have:

{ [a,z + né/2] if z €[a,a+ né/2),
I(z,6)={ [z —nb/2,z+nb/2] if z€[a+ns/2,b-nb/2],
[z —né/2,b) if z€[b—nd/2,b]

Proof. Evidently we have
I.(z,6) = [max{a,z — né/2}, min{z + n§/2,b}].

Let us suppose that z € [a,a+ né/2]. Since z —né/2 < a+nb/2—nb/2 = a, we obtain
max{a,z — né/2} = a. Then

z+né/2<a+né/2+n6/2=a+né<a+n(b-a)/n=0,

which implies min{z + n§/2,b} = z + né/2.
Finally we get
In(2,6) = [a,z + né/2].

Now let z € [a+n8/2,b—né/2]. We have z —né/2 > a+né/2-né/2 = a and
z+né/2 < b—né/2+ ns/2 = b, which directly implies that

I.(z,6) = [z = nb/2,z + né/2].
Finally, let us suppose that z € [b — né/2,b]. We obtain
z-nb/2>b-né/2-né/2=b-nb>b-—n(b—a)/n=2a

and
z4+n8/2>b—né/2+né/2 =0,

whiéh immediately implies
I.(z,6) = [z —né/2,b). O
Lemma 2.3. Let n € N and let f € C"[A, B] be such that f™)(z) > 0 for all
z € [A, B]. We have:

S“P“Azf(t)h tv t+ nh € [A’ B]} = A?B—A)/nf(A)

Proof. As in the Remark of Definition 1.1 it is easy to see that h can be
considered > 0. Let t,t + nh € [A, B]. By the mean value theorem there exists
£ € (t,t+ nh) such that

nf(t) = [t,t+ h,...,t+ nh; f)(h"n!) = A" f(€) > 0,
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where [AZf(1)] = ARA(1).
Let us fix t € [A, B]. Obviously for all h € [0,(B — t)/n] we have
0 < ARf(t) < sup{ARf(2); h € [0,(B - t)/n]}.
Let F(h) = A} f(t), where F : [0,(B —t)/n] — R. We have:
= n—i T NV . n—i[ P .,. N
P = (D (%) e+ imy = > (3)ire+im =

n-1

n i n-1)\, ih) = _qyn-1-j n-1\, .
"D (i—l)”‘+ ")‘"JZ:%( ) ’( ) )f(t+h+1h)_

nAf(t 4 h) = nh™" £ (),
where 7 € (t + h,t + nh) C [A, B].
Hence by hypothesis, F'(h) > 0 for all h € [0,(B —t)/n] and therefore we get
(1) 0<ARf(t) £ Alg—gy/m)f(t), forall he [0,(B—t)/n] (and all t € [A, B]).
Now denote G(t) = A?B_t)/ﬂf(t) where G : [A, B]| — R. As above we get:

n-1

S (U ) seics-o/m =

. 1
1=0

60 = (L (-0~ (1) steicB-0/m)y = -
1=0

= A7kl (1) = =((B = /)" [)(3),

where v € (A, B].
Hence G'(t) < 0 for all t € [A, B] and consequently G(t) < G(A), for every
t € [A, B], which can be rewritten as follows:

(2) Alg—onf () € Ayl (A), for all t€ [4,B]
From (1) and (2) we derive
0<ALf(t) < AI‘B_A)/nf(A) for all t and h satisfying A<t<t+nh<B,
which proves the lemma. O

The first main result is

Corollary 2.4. Let us suppose that n € N, 1 < p < oo and that f € C"[A, B]
satisfies f(M(z) > 0, for all z € [a,b]. Then for all § € [0, (b~ a)/n] we have:

a+né/2 b-né/2
(3) ma(fid)p = (/ (A?x—a)/n+6/2f(a))pdz + / 1 (A5 f(z - né/2))Pdz+

+né
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b
Al 2 /nsss2f(x — nb/2))Pdz p,
/b_nm( oesy/mss/af (2 — n8/2))dz)

Proof. Let I,(z,8) = [A.(z), Ba(z)] where I,(z,6) is defined from Lemma
2.2. From Definition 1.1 and from Lemma 2.3 we obtain

n(f,238) = Alg, (0)-ane)/nf (An(2)), € [a,0].

Hence from Definition 1.1 and from Lemma 2.2, and taking into account that

b a+né/2 b—né/2 b
L1 ot
a a a+né/2 b-né/2
by simple calculus we immediately obtain (3). O
Now we can formulate the second main result.

Theorem 2.5. Let us suppose that n € N, 1 < p < oo and f € C[a,b] N
K%} '(a,b]. Then for all § € [0,(b— a)/n] (3) holds.

Proof. For m € N and z € [a,b] let us denote by B,,(f)(z) the Bernstein
polynomials defined by

Bu(1)(@) = (/6= 3 (7 ) 2 - 26— 2)"*f(a),
k=0

where z; = a + k(b — a)/m. It is well known that f € K} '[a,b] implies B,,(f) €
K7 '[a,b], i.e. [Bm(f)]™)(z) >0, z € [a,b], m € N (see [10] or e.g. (8], p.125-126).
Also, from f € [a,b] we obtain that lim,, oo Byn(f) = f uniformly on [a,b] (see e.g.
[6]). Now applying Corollary 2.4 to B,,(f), relation (3) holds by replacing f by B,,(f).
Then passing to limit with m — oo and taking into account that lim,, oo Bm(f) = f
uniformly on [a, b], we get

4) dim_7o(Bn(f)i8)p = E,

where E is the term on the right side in (3) (written for f).
But it is known (see e.g. [15]) that as function of f 7,-modulus is a semi-norm,
ie.

Tn(f +9; 6)p < Tn(f;J)p + Tn(g;6)p and 'n(’\f;J)p = Il\lTu(f;6), A€ER.
This immediately implies
Iru(f;6)p - 7n(9;6)p| <ta(f - 9:8)p, f,9€ Cla’b]°

Since
a(f = 9;6), < 2"||f - gll(b - a)/?,
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where by || - || the uniform norm is denoted and taking into account g = Bm(f) we get

(5) 7a(f;8)p — Ta(Bm(£); 6)pl < 2°1f = Bm()lI(b - a)'/?.

Passing to limit with m — oo in (5) and taking into account (4) we get
7a(f;6)p = E, which proves (3). O

Remark. For n = 1, in Theorem 2.5 f is supposed to be continuous and
monotonous on [a,b]. However it can be proved that continuity of f on [a,b].is not
necessary. For example we obtain:

Corollary 2.8. Let f : [a,b] — R increasing on [a,b] and let 1 < p < co. For
all 6 € [0,b — a] we have

a45/2
) n(fi6)p = ( / (f(z + 6/2) - f(a)Pdz+

b-5/2 b
/ (f(z +6/2) - f(z — 8/2)Pdz + / (F(b) - f(z — 6/2)Pdz)/>.
a b-5§/2

+5/2

Proof. Since f is increasing on [a, b, from Lemma 2.2 and from Definition 1.1
for n = 1 we get (replacing w; by w):

f(z +8/2) - f(a), z € [a,a+6/2],
(7) w(f,z;8) = { f(z+6/2)— f(z—6/2), z€[a+8/2,b-6/2),
f(b) - f(z-6/2), z€[b-6/2,0).

But
b a+8/2 b-5/2 b
L1 ot o
a a a+6/2 b-5/2

therefore from Definition 1.1 and from (7) we get (6) immediately. O

Remarks. 1). Since for n > 1, f € K}7"[a,b] implies that f is continuous on
the open interval (a,b) (see [9], p.27), condition f € C[a, b] in Theorem 2.5 one reduces
to the continuity of f at a and b.

2). Let us consider, for example, f : [0,7/2] — R defined by f(z) = sinz.
Since f is increasing on [0, 7/2], by Corollary 2.6 (for p = 1), we get:

§/2 (x=8)/2
m1(sin; é); = /(; sin(z + 6/2)dz + /6/2 (sin(z + 8/2) — sin(z — 6/2))dz+

/2
/ (1 - sin(z — 6/2))dz = — cos(z + §/2)I5" ™" + cos(z - 8/2)[513 + 6/2 =
(x=8)/2

— cos(7/2) + cos(6/2) + cos(x/2 — §/2) — cos 0 + §/2 = cos(§/2) + sin(6/2) + 6/2 - 1.
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Clearly, Corollary 2.6 can be used to calculate the 7-moduli of smoothness for
many other elementary functions.
3). By Remark 2 and Theorem 1.2 we get the estimate:

|| sin — L(sin)||x < C(sin(va/2) + cos(va/2) + Va/2 - 1).

4). We think that Corollary 2.6 can be used, for example,” to improve (for
monotonous functions) the absolute constant C which appears in the estimate of
Theorem 1.2.

REFERENCES

[1]) ANDREEV, A.S., V.A.Porov. Approxima.iion of functions by means of linear
summation operators in L,. Coll. Math. Soc. Jdnos Bolyai, 35, Functions, Series
Operators (1980) 127-150.

[2] DyukaNovA, T.A. Approximation of functions by means of linear summation of
Baskakov’s operators in L,. Pliska Stud. Math. Bulgar, 5 (1983) 32-39.

[3] GAL, S.G. Calculus of the modulus of continuity for nonconcave functions and
applications. CALCOLO, 27 (1990) 195-202..

[4] GAL, S.G. Calculus of higher order modulus of smoothness for convex functions
of higher order and applications. (submitted).

[5] IvaNov, K.G. New estimates of errors of quadrature formulae, formulae of numer-
ical differentiation and interpolation. Anal. Math., 6 (1980) 281-303.

[6] LorENTZ, G.G. Bernstein Polynomials, Univ. Toronto Press, Toronto, 1953.

(7] Popov, V.A. On the quantitative Korovkin theorems in L,. C.R. Acad. Bulgare
Sei., 35 (1982) 897-900.

[8] Popoviciu, E. Mean Value Theorems in Mathematical Analysis and their Con-
nection with Interpolation Theory. Ed. Dacia, Cluj, 1972, (in Romanian).

[9] Popoviciu, T. Sur quelques propriétés des fonctions d’une ou de deux variables
réelles. Mathematica (Cluj), VIII (1933) 1-85..

[10] Popoviciu, T. On best approximation of continuous functions by polynomials.
Monogr. Matem., Sect. Mat. Univ. Cluj,fasc. 111, 1937, (in Romanian).

[11] QUAK, E. Uni-und Multivariate L,-Abschitzungen des Approximationfehlers Pos-
itive Linearer Operatoren mit Hilfe des 7-Moduls, Dissertation, Universitat, Dort-
mund, 1985.



Higher order averaged modulus of smoothness 239

[12] Quak, E. Ly-error estimates for the approximation by positive linear operators,
Approximation Theory V (C. K. Chui, L. L. Schumaker, J. D. Wards edts.) 527-530,
Academic Press, New York 1986.

[13] Quak, E. L,-error estimates for the approximation by positive linear operators
using the second order 7-modulus. Analysis Math., 14 (1988) 259-272.

[14] SENDOV, BL. Approximation with respect to Hausdorff metric. Thesis, Moscow,
1968, (in Russian).

[15] SENDOV, BL. V. A. PoPov. Averaged moduli of smoothness. Bulgarian Mathema-
tical Monographs, vol. 4, Publ. House Bulg. Acad. Sci., Sofia, 1983.

Department of Mathematics

University of Oradea

Str. Armatei Romane Nr. 5

3700 Oradea

ROMANIA Received 14.02.1992



