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ON THE UPPER BOUNDS FOR THE KISSING NUMBERS

P.BOYVALENKOV

ABSTRACT. Let us denote by 7, the maximum number (kissing number) of
nonoverlapping unit spheres that can simultaneously touch a unit sphere in R".
Only the following values of 7, are known (Levenshtein (1979) and Odlyzko &
Sloane (1979)): 7 = 2, 72 = 6, 13 = 12, 73 = 240 and 14 = 196560. Estimates
for 7, have been made by different authors ([1,7,8,9,10,11]). For example, we have
24 <14 <25 40 <75 <46, 72 < 75 < 82, etc. The best known upper bounds
for 7, (4 < n < 24) were obtained by Odlyzko & Sloane (1979) using a computer
to find suitable polynomials satisfying the conditions of the following theorem ([3,
8]):

Theorem. Let n > 3 and P(t) be a real polynomial such that:
(C1) P(t) <0 for -1 <t <1/2;
(C2) the coefficients in the expansion of P(t) in terms of Jacobt polynomials

k
P(t) = Zl‘ P;(n-a)/z,(n-s/z)(t)
1=0 '
satisfy lo >0, I, >0 fori=1,2,... k.
Then 1, < P(1)/l.
In this paper we obtain some restrictions in the form of the polynomials P(t)
of degree k > 9 giving good upper bounds for 74 and 5. We also propose a new
method for finding good polynomials for the above theorem.

1. Conditions for extremality. Instead of P,—“"_Jm‘("—am(t) we shall write
Pi(t). Let A, = {P(t) € R[t] : (C1) and (C2) are satisfied} be the set of polynomials
giving upper bounds for 7,,. We denote by [;(P) the coefficients in the expansion of
P(t) in terms of Jacobi polynomials.

A polynomial P(t) € A, is called extremal for 7, if it gives the best upper
bound for 7, among the polynomials from A, having the same or lower degree.
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We prove that if the polynomial P(t) of degree k > 9 is extremal for 74 or s,
then lg( P) = I7(P) = lg(P) = 0 under some other conditions. It is not difficult to check
that the following Lemma is true:

Lemma 1.1. Let P(t) = Y5 (L(P)Pi(t), Q(t) = o Li(Q)Pi(t) and H(t) =
aP(t)+8Q(t) = SX9H 1,(H)P(t), where a > 0,8 > 0, lo(P) > 0, lo(Q) > 0, P(1) > 0
and Q(1) > 0. Then the number H(1)/lo(H) is between the numbers P(1)/lo(P) ana
Q(1)/1(Q).

In particular, it follows from Lemma 1.1 that if two polynomials give some
upper bounds for 7, then their linear combinations with positive coefficients give upper
bounds for 7, in the interval between these two bounds.

Lemma 1.2. If the polynomial P(t) of degree k > 9 is extremal for 74, then
ls(P) =0.
Proof. We consider the polynomial

Qi1(t) = Su(t) — a(t® + 362/8 - 3t/8 — 1/16)’
where
Sit)= (B +at? +bt+c)[(t—e)?+ f(1/2-t)(1+1)] (t—1/2) € Ay

for a = 1.368502, b = 0.5015963831, ¢ = 0.0446307, e = 0.0994729872, f = 0.744631 is
the polynomial obtained in [2,8] for 74; a = 0.1812926. Setting (£ + 3£ — 3 — 1)’ =
Z?=0 I P;(t) we have [;(Q,) = li(S4) — al} for 1 = 0,1,2,...,6 and /;(Qq) = li(Sy) for
i =7,8,9. When a = 0.1812926 = I5(S4)/I3 we have lg(Q,) > 0, Is(Q1) = I7(Q1) =
I5(Q1) = 0, l6(Q1) < 0, 1(Q1) > 0, for i = 0,1,2,3,4 and Q1(1)/lo(Q1) = 21.427.
Assume that P(t) is extremal for 74, deg(P) > 9 and lg(P) > 0. Then there ex-
ists 8 > 0 such that lg( H) = ls(P)+8l(Q1) > 0 where H(t) = P(t)+Q:(t). Obviously
H(t) € A, and deg(H) = deg(P). Using Lemma 1.1 we obtain 21.427 = Q;(1)/lo(@Q1) <
H(1)/lo(H) < P(1)/lo(P) - a contradiction (24 < 74 < 25 by [6,chap.13]). O

Lemma 1.3. If the polynomial P(t) of degree k > 9 is extremal for 74, then
Iz(P)=0.
Proof. The proof is similar to the proof of Lemma 1.2 using the polynomial

Qa(t) = 2(t + 1)(t + 1/2)%(¢? - 5t/2 + 9/5)(t — 1/2).

instead of Q;(t). We have now Qz(1)/lo(Q2) = 24 and [i(Q2) > 0 for i # 7 but
12(Q2) < 0. O

Lemma 1.4. If the polynomial P(t) of degree k > 9 is extremal for 74, and
P(1)/lo( P) > 25.4901, then Ig(P) = 0.
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Proof. One can use the polynomial
Qs(t) = (2 +at® + bt + c)*[(t — €)* + f(1/2 = t)(1 + 1)](t - 1/2)

with @ = 1.1268, b = 0.259261614, ¢ = 0.0039482945, e = 0.04526608, f = 0.8244
in the proof of this Lemma. Now we have [;(Q3) > 0 for i # 8, Ig(Q3) < 0 and
Q3(1)/lo(03) =25.4901. O

Theorem 1.5. If the polynomial S4(t) gives the best upper bound for T4 among
the polynomials of degree 9 in A4, then S4(t) is extremal for 4.

Proof. In paper [5) it was proven that the polynomial E(t) = (t2+t+1/6)(t—
1/2) (used in [1]) is extremal for 74. Since E(1)/lo(E) = 26 > S4(1)/lo(S4) = 25.5585
(the best known upper bound for 74), it is enough to prove that polynomials of degrees
6,7 or 8 giving better upper bounds for 74 than S4(t) do not exist. Assume, for example,

f(t) € Ay, deg(f) = 6, and f(1)/lo(f) < Sa(1)/lo(Ss). Then lg(f) > 0 and using
Lemmas 1.1 and 1.2 we can obtain a polynomial H(t) = f(t)+3Q1(t) € A4, B > 0 with
deg(H) = deg(S4) = 9 and H(1)/lo(H) < f(1)/lo(f) < Sa(1)/lo(S4) — a contradiction.
Similarly one can prove that no polynomials of degrees 7 or 8 give better upper bounds
for 74 than S4(t). O

The next three lemmas can be proven in the same way as Lemmas 1.2, 1.3, 1.4
([2]). We use the polynomials R,(t), Ra(t), Ra(t) respectively, where

Ri(t) = Ss(t) — —a(t® + 6t/7 4+ 5/49)%(t — 1/2)?

where
Ss(t) = (£ + at® + bt + ¢t — €)? + f(1/2 - t)(1 + D))(t = 1/2)

with @ = 1.33342, b = 0.474050127, ¢ = 0.033080914, e = 0.107556573, f = 0.73185
(55(t) was used in [2] to estimate 75) and a = 0.1910323;

R;(t) = Qa(t)
(now we have R3(1)/lo(Rz) = 42);

Ra(t) = (P + at® + bt +c)*[(t—e)* + f(1/2=t)(1 + 1))(t - 1/2)

where @ = 0.914, b = 0.064680836, ¢ = —0.030523192, e = —0.0349966, f = 0.9669.
Lemma 1.6. If the polynomial P(t) of degree k > 9 is extremal for 15, then
lg(P) = 0.

Lemma 1.7. If the polynomial P(t) of degree k > 9 is extremal for T5 and
P(1)/lo(P) > 42, then l3(P) = 0.
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Lemma 1.8. If the polynomial P(t) of degree k > 9 is eztremal for 75 and
P(1)/lo(P) > 42.356, then Ig(P) = 0.

The following theorem can be proven in the same way as Theorem 1.5

Theorem 1.9. If the polynomial Ss(t) gives the best upper bound for 75 among
the polynomials of degree 9 in As, then Ss(t) ¥s eztremal for 5.

It is not difficult to see with the help of Lemma 1.1 that the following theorem
is true:

Theorem 1.10. Let P(t) € A,, deg(P) = k, m > k be an integer and let
€ > 0 be an arbitrary reai number. Then there ezists a polynomial Q(t) € A, of degree
m such that

Q(1)/16(Q) < P(1)/lo(p) + .

With the help of the polynomial Q2(t) from Lemmas 1.3 and 1.7 one can also
prove the following lemmas:

Lemma 1.11. If the polynomial P(t) of degree k > 9 is extremal for 7, then
’7(P) =0.

Lemma 1.12. If the polynomial P(t) of degree k > 9 is extremal for T, then
I2(P)=0.

Similar lemmas can be proven in higher dimensions for certain coefficients of
the extremal polynomials.

2.A method for obtaining upper bounds for 7,. We propose a new
method diving good upper bounds for 7, using polynomials of the form P(t) = G(t)(t—
1/2) € A,. Obviously G(t) > 0 for —1 < t < 1/2 and by Karlin’s theorem [4, p.75] we
have the representation

G(t) = { C2(t)+(1/2-t)(1 + t)B%_,(t) if deg(G) =2m
T e+ 1)CA(1) + (1/2 - t)BL (1) if deg(G) =2m + 1

where Cp(t) = t™ + cit™ ' + -+ + cm, Bj(t) = bot’ + -+ b;, j=morm-— 1.

The polynomials Cy,(t), Bm-1(t) and By,(t) have zeros only in the interval
[-1,1/2] (see [4, p.75]). We prove that C,,(t) and Bp—1(t) (respectively B,,(t)) have at
least three common zeros if the polynomial P(t) is extremal for 7,, and n > 4.

Lemma 2.1. If the polynomial P(t) = G(t)(t—1/2) of degree k > 4 is extremal
for 7o, n > 2 and l;(P) > 0, then polynomials Cy,(t) and By,_1(t) (or By(t)) have at
least one common zero.
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Proof. Assume that C,,(t) and B,,_1(t) (or B, (t)) have no common zero.
Then from Karlin’s theorem [4, p.75] we obtain G(t) > ¢ > 0 for some ¢ and —1 <t <
1/2. Consider the polynomial

P.=(G(t)-¢)(t-1/2)<0

for —i < t < 1/2. Since P.(t) = P(t) — e(t — 1/2), we have [;(P.) = [;(P) for
i>2, li(P) = h(P)-3%, lo(P.) = lo(P)+¢/2, P.(1)+ P(1)-¢/2, deg(Pe) = deg(P).

For small enough ¢ > 0 we can obtain /;(P,) > 0 and hence P,(t) € A,. But one can
check directly that

P(1) _ P(1)-¢/2 _ P(1)
10(P) ~ lo(P)+€/2 " Io(P)

— a contradiction since P(t) is extremal. O

Lemma 2.2. If the polynomial P(t) = G(t)(t—1/2) of degree k > 6 is extremal
for 1., n > 4 and I;(P) > 0 for i = 1,2,3, then the polynomials C,(t) and By,_(t)
(or B,,(t)) have at least two common zeros.

Proof. By Lemma 2.1 Cy,(t) and By—1(t) (or By (t)) have a common zero
a € [-1,1/2]. Assume that they have no other common zero. Then we obtain the
representation

Gi(t) = C2_ () + (1/2=t)(1 + t)B2 _,(t) if deg(G) = 2m
W= (¥ 1C2_(0+(1/2-0BE_ (1) i deg(G)=2m +1

where G(t) = (t — @)?G,(t) and G,(t) > ¢ > 0 for some ¢ and —1 < t < 1/2 again by
(4, p.75]).
Now consider the polynomial

P(t) = (t— @)} (Ga(t) — £)(t - 1/2) = P(t) —e(t — a)*(t = 1/2) < 0

for =1 <t < 1/2. As in Lemma 2.1 we have [;(P,) = l;(P) for : > 4 and [;(P,) > 0
for i = 0,1,2,3 and small enough ¢, i.e. P,(t) € A,. Since lo(P.) = lo(P) + 5’;(na’ +
4a+1) > lo(P) for n > 4, P.(1) = P(1) = ¢(1 = a)? < P(1) and deg(F,) = deg(P) we
obtain again P,(1)/lo(P.) < P(1)/lo(P) - a contradiction. O
Lemma 2.3. For any n > 10 and arbitrary real a and 3 we have
(1) L(a,B,n)=-B%]2-a?/2n+ 2aB/n - B/n + 6a/n(n+2) - 3/2n(n+2) <0.
Proof. The discriminant of L(a,3,n) with respect to a is
(2) D(B,n) = X%((4-n)B?/4+4 (10— n)B/2(n + 2) + 3(10 — n)/4(n + 2)?].
The discriminant of n? D(f,n) with respect to 3 is m‘-ﬂyD where
(3) D=(10-n)(n-1)/2<0
for n > 10 which proves the lemma. O
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Lemma 2.4. If lo(f) > 0 for some n, 4 < n < 9 where f(t) = (* + at +
B)%(t = 1/2), then f(t) € An.

Proof. Note that lo(f) = L(a,B,n) (see(1)). It is enough to prove that
L;i(f) > 0 for i = 1,2,3,4,5. These coefficients can be easily expressed by a, § and n.
So, we have Is(f) = 3840/(n+3)(n+4)...(n+7)>0. O

If l4(f) = 768(a—1/4)/(n+2)(n+3)(n+4)(n+5) < 0, then we obtain a < 1/4.
But the discriminant of lo( f) with respect to 8 is Z[(4—n)a?+2(n—1)(4a-1)/(n+2)] <
0 for n > 4 and @ < 1/4 — a contradiction. Therefore I4(f) > 0.

Since lo(f) = =B8%/2+(n+1)la(f)/8—(n+3)(n+5)ls(f)/128 > 0 and l4(f) > 0
we obtain that I3(f) > 0.

Because of lo(f) = L(a,B,n) > 0 we must have D(3,n) > 0( see (2)). Thus
n-10+2vVD n-10-2VD
(n+2)(4-n)" (n+2)(4-n)
(3)) for 5 < n < 9. One can check directly that for such 3 we have K(8,n) = 28— (n—
34)/4(n + 6) > 0. Hence I3(f) = 48[(a — 1/2)* + K(B,n)]/(n+ 1)(n+2)(n +3) > 0

For arbitrary real z and n > 0 we have M(z,n) = 2% + 6z/(n + 2) + 15(2n +
7)/(n+2)+15(2n+ 7)/(n + 2)(n + 4)(n + 6) > 0. Thus l,(f) = 2 [M(B - a/2,n) +
(10 — n)a?/4(n + 2)] > 0. The Lemma is proven.

We are now in a position to state the main theorem concerning common zeros.

Theorem 2.5. If the polynomial P(t) = G(t)(t — 1/2) of degree k > 8 1is
ertremal for T,, n > 4 and [;(P) > 0 for i = 1,2,3,4,5, then the polynomials Cp,(t)
and B,,_1(t) (or B,,(t)) have at least three common zeros.

Proof. It follows from Lemma 2.2 that C,,(t) and B,,_1(t) (or B (t)) have at
least two common zeros. Hence we have

B> —-1/4forn=4and g€

(D is determined in

P(t) = (£ + at + B)*Gy(t)(t — 1/2) = f(t)Ga(t)
where

Galt) = C2_,(t)+ (1/2=t)(1 + t)BZ _5(t) if deg(G) = 2m
=V 4+ 1))+ (1/2-t)B2_,(t)  if deg(G) = 2m + 1

If Cpu_2(t) and B,,_3(t) (or B,,_2(t)) have no common zero, then by [4, p.75]
we obtain G5(t) > ¢ > 0 for =1 <t < 1/2 and some ¢.
Now we consider the polynomial P,(t) = f(t)(G2(t) —¢) = P(t) —ef(t) <0 for
t < 1/2. We have l;(P.) = l;(P) for i > 6 and l;(P.) = li(P) — el;(f) > 0 for
.,5 and small enough ¢, i.e. P,(t) € A,.
lf lo(f) < 0 (this is a fact for n > 10 by Lemma 2.3), then we easily obtain that

-1<t
1=0,1

P(1) _ P()-ef(1) _ PQ)
o(Pe) ~ To(P) = elo(f) < TolP)
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- a contradiction.

If lo(f) > 0, then we have 4 < n < 9 by Lemma 2.3 and hence f(t) € A, by
Lemma 2.4. Therefore we have f(1)/lo(f) > P(1)/lo(P). But the iast inequality is
equivalent to P.(1)/lo(P:) < P(1)/lo(P) — a contradiction. This completes the proof.
a

We remark that the requirements /;(P) > 0 for i = 1,2,3,4,5 in Theorem
2.5 are not essential, since if we have found an extremal polynomial satisfying these
conditions, then each extremal polynomial having the same degree must satisfy them.
Therefore without loss of generality we can search for extremal polynomials having at
least three double zeros in the interval [-1,1/2] (see also the remark at the end of the
next paragraph).

We use Theorem 2.5 and Lemmas 1.2, 1.3, 1.4, 1.6, 1.7 and 1.8 to propose a
new method for finding good upper bounds for 74 and 7s. Let P(t) = G(t)(t — 1/2)
where G(t) > 0 for —1 < t < 1/2. Using Theorem 2.5 one can see that the polynomial
G(t) depends on k — 4 parameters, where k = deg(P) = deg(G) + 1. By the conditions
lg(P) = I7(P) = Is(P) = 0 we express 3 of these parameters in terms of the remaining
k — 7 parameters. For small k we determine these k — 7 parameters so that the ratio
P(1)/lo(P) is minimal and P(t) € A,. We do this by a Monte Carlo method using a
PC as a calculator. A similar approach can be used in higher dimensions and degrees
(we have shown in a very long technical proof that if the polynomial P(t) of degree
k > 10 is extremal for 7,, n > 9, then it must have at least four double zeros in the
interval [-1,1/2]).

Using this method for k = 9 we have obtained in [2] the polynomials Si(?)
for n = 4 and S5(t) for n = 5. They give the estimates 74 < 25.558429 ([2,8]) and
75 < 46.345916([2]) ( s < 46 was obtained in [8] with a polynomial of degree 10).

I would like to acknowledge helpful conversations with prof. S.M.Dodunekov.
I thank prof. V.I.Levenshtein for his comments on the problem of upper bounds for
sphere packing problems.
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