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ON SENDOV’S BOUND FOR ZEROS OF A POLYNOMIAL

K.MAHDI

ABSTRACT. In this paper we obtain upper and lower bounds for the positive
roots of algebraic equations, then the results are applied to determine the R-order
of convergence of iterative numerical processes.

1. Introduction. A method, originally due to Bl.Sendov [2] for simultaneous
approximate calculation of all positive roots of the equation

(1) fl(z)=ap+ a2+ ...+ apz™ =0

is based on the following theorem given by H.Poincare 1] : Let f be a polynomial with
real coefficients. If k is a large natural number, then the number of positive roots of the
equation (1) is equal to the number of variations in sign in the sequence of nonnegative
coefficients of the polynomial

9(z) = (1 + 2)*f(2).

Let 0 < z; <z < ... < zp, p < m be positive roots of equation (1), (ag > 0, a,, # 0)

and
m+k

(2) (1+2) 2 bi(v
v=0
Let us denote by vk(1) the smallest integer number, for which bi(vk(1)) > 0
and bg(vk(1)+1) < 0, bg(0) = ag > 0. In general, vi(s) is the smallest integer number,
for which (=1)*""he(v(s)) > 0, (=1)*"Vbi(vi(s) + 1) < 0, vk(8) > vk(s — 1). Then we
obtain the numbers

(3) vi(1),vk(2),. .., vk(8).

According to Poincare, there exists such number kg = ko(f), that for every
k > ko we have s, = p, where p is the number of positive roots of the equation (1).
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Theorem A (Bl.Sendov [2]). The numbers (3) satisfy

vi(s) vk(s)+1
(4) ) 1 S End < 0y
(5) im —2%)  _ im gk, v,5) = 2.,

k—oo k — Vk(s) +1 k—oo
f(zs)=0, s=12,...,p.

Another approach is given in [3].
We consider the polynomial equation

n-1
(6) Prpg(s)=s"-(p+ I)Z‘I'-’"-i-lr p20,g>0,n2>2.
1=0
By Descartes’ rule, P, ;(s) has exactly one positive root a,(,:,).
The case p > 0, ¢ = 1 has been treated by Traub in [4] (see,also [5]) and the
case p = 1, ¢ = 2 was considered by Scharlach in [6]. The following theorems are used:

Theorem B (J.Herzberger [7]). Forn > ¢/(p+ 1) it holds

n
(7) -m(p+q+l)<a,‘,f:,’<p+q+l.

Theorem C (N.Kjurkchiev [8]).

(p+1)q" » L, (n) (p+1)q"
8 +1-————(1+1/n)" <)) <p+g+1 - ——m——.
®  pta (p+q+1)"( /) pa P4 (p+g+1)"

The problem of determining the bounds for ag‘q) is considered in [9-14].

2. Main results.
Theorem 1. Using the same notation as in Sendov’s theorem the nezt inequal-

ities hold k % e
_— < €<
9) Frik—og1 S¢S

Eod

A

Proof. According to Bl.Sendov, there exist such numbers § = é(f), 6 € (0,1)
and N = N(f), that for k > N we have sgnbx(v) = sgnag, 0 < v < 6k ,sgnbi(v) =
$gNam, (1 -8k <v<m+k. If0<é<1and ké <v <(1-6)k,then

be(v) _ k v 1
(10) *) 'I(k+1k—u+l)+c‘a""k+1’
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where C; = C,(f) does not depend on k and v and |6 ,| < 1. From (2) we obtain

bk(v)
(11) 5 f(k+1k-u+1) ZB(I: v,i)a;
where
N v v—-1 v—(i—-1) k v i
B“”“)'k—u+1'k—u+2”'k-u+i—(k+1k—u+1)
Lettinga+ 1 =v/(k—v+1) < (1-8)/6 we get
. i —§\i
(12) 1Bk,v,9) < [(a 4 1) = (e D) | <i(5 )F‘1

The equality (10) follows from (11) and (12) by setting

Ci=Ci(f) = ii(l ; 6)‘|¢i|-

=1

From (10) and (=1)*""bx(v(s)) > 0, (=1)*bx(vk(s) 4+ 1) < 0, we obtain

k v
s—1 >
S e u+1)+C‘o‘k+1)-°’

k v+1
-1
(-1 (f(k+1k )+C‘”’k+1)<°’

where 6,6, € [—-1,1].
The theorem is proved. O

The estimates (4) and (9) are in some sense analogous to the Herzberger’s
estimates (7) (see, also (8)) for localization of the unique positive root of the equation

(6).

In the following theorem, we shall derive some upper and lower bounds for the

(n )

root o, of the equation (6).

Theorem 2. Using the same notations as in Herzberger’s theorem the nezt

inequalities hold

) _(p+1)g"

(n) (p+1)¢"
Piptat+ )V

T es <ol <p+q+1-B

(13) pt+qg+1-—

where

2
A(") = A B(n) — l + E(") ,
ne 14+ /1-4n(p+ 1)¢"/(p+ ¢+ 1" P9 ( )
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20p+ 1)g*"((p+ g+ D)™ — (p+ 1)g"(n+ 1))}
1+ V1-an(p+ 1)2¢/((p+q+ )" — (p+ D)g*(n+ 1))*’

! 4

(n) —
P.q

Proof. Let m&" , M{%) be positive numbers and
Pn.v.q(mg,.‘q)) <0, Pnpq(M )) > 0.
Then
m{) < of7) < M.
Let us suppose that

A (Pt 1)q"

Pi(p+q+ 1)’ Prpalmsg) <O

mi" =p+q+1-—

i.e.

(n (p+l)q " (n
(14) (1- A”)———(p+q+1)n“) A > 1

Therefore

_ a1\ ) (n)__(p+ 1)q" ()
(l Ay (P+q+ 1)n+l) Apq > ( nAPQ(p+q+ 1)n+l)A

the inequality (14) is true, when the inequality

(15) n(p+ D@ (A0)" = (p+a+ DAL+ (p+a+ 1) <0
is true. Define ( )
+ 1)q"
MM —pyg+1— B PT
P9 p Q+ PQ(p+q+1)n
so that
Prp (M%) >0,
i.e. ( )
_pgm_(pt+1)g ") (n)
(1 B e 1)n+1) B <1, 1< B <2.
We take
B = 1+ )"
Then
(n)\n (P + l)q“ (n)
(1-(+ef) T +q+1)n+l)(l+£ )< 1.

11 Cepamka 3-4
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From
(p+1)g"

(1-a+ ne ) o T 1

)(1+e§,’2)<1
we have

nf.(n) 2 (n) n n+1 n
(16) n(p+ 1)g" (1)) = el)((p+ 1)a*(n+ 1) = (p+ g+ 1)) + (p+ 1)g" > 0.

From (15) and (16) we obtain A", e{™) (resp.B{") in (13). This completes the
proof of the theorem. O

3. Numerical results. The bounds (8) and (13) are tested numerically.

Table of o) (p=g¢=1,n=3,4,6,7)

Bound(8): Bound(13):
2.824417010 < ol)) < 2.925925926 2.919435246 < o\)) < 2.919654783
2.939718364 < o\’ < 2.975308642 2.974437378 < ol') < 2.974449635
2.993081958 < o\°) < 2.997256516 2997241295 < o\°) < 2.997241344
2.997671239 < o\') < 2.999085505 2.999083546 < o\) < 2.999083547

Remark. Then the results are applied so as to determine the R-order of con-
vergence of iterative numerical processes. Let /P denote a general iterative process
that produces a sequence of approximations {t(¥)} with the limit point t*. For the

errors
n® = |t - t¥) > 0

it is often possible to derive a difference inequality like

n
(17) 0 <A [T ()70, pgy >0,
1=0
According to J.Schmidt in [15] the recurrence (17) has R-order of convergence
~ OR(IP,t*) (see J.Ortega and W.Rheinboldt [16]) of at least a,(,:',“), where ag:,“) is
the unique positive root of the polynomial P4y ().
Using the estimate (13) we may establish

1
(k) (n+1) _ Aty (P 1™
Or(0,{n })Zap:) >pt+q+1 Ap'..q (p+q+l)"+l‘
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The R-order is one of the most important measures to characterize the speed
of convergence of sequences obtained by iterative processes in normed spaces (see
W.Burmeister and J.Schmidt [17], J.Herzberger [18], F.Potra [19], N.Kjurkchiev [20]).
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