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JOIN DECOMPOSITION OF CERTAIN SPACES

H.N. BHATTARAI

Abstract. The notion of a join of double coset and orbit spaces (studied as Pasch
geometries) is given in [1]. A space which is a join of projective spaces is naturally
the generalized projective space of [5] and the join decomposition is equivalent to
the concept of direct union decomposition into irreducible spaces. In this paper
geometries the decomposition of which give either projective spaces, groups or orbit
spaces isomorphic to Q/Q+ are characterized. The direct union decompositions of
[5] is obtained as a corollary.

Introduction. The definitions and the concept of a Pasch geometry (which
we simply call a geometry here) can be found in [4] and the notion of a join in [1].
A geometry in which x# = x for all x and whenever (x, x, y) ∈ ∆, y = x or y = e
is naturally a projective space (including projective points and lines, see [2]). A join
of projective spaces gives a generalized projective space (and hence a complemented
modular lattice in case of finite dimension) of [3] or [5]. We show that a geometry
whose join decomposition admits projective spaces is characterized by (what we called)
Lt-connectedness and the property that x# = x for all x. However, if we assume only
Lt-connectedness, then such a geometry in its decomposition is a join of geometries
each of which is either a projective space, a group or isomorphic to the orbit space
Q/Q+ where Q is the field of rational numbers and Q+ the multiplicative group of
positive rationals. Then additional assumption of x# = x for all x excludes Q/Q+ and
a group with this property is itself a projective space (i.e. a vector space over Z2),
thus resulting in a join of projective spaces. This is easily seen to be equivalent to the
direct union decomposition of [5], except that the join structure depends on the (linear)
ordering of the indexing set of the spaces whereas the direct union of projective spaces
in [5] does not.

Now let (A, e,∆) be a geometry. For x, y ∈ A, let xy = {t : (x, y, t#) ∈ ∆}.
(Considering A as a hypergroup or multigroup, xy is the set of all elements which
appear in the multivalued product of x and y. In case A is sharp (i.e. a group), xy
is just the product of the elements x and y and in case A is a projective space, xy is
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the set of all other points colinear with x and y.) Since t ∈ xx# ⇐⇒ t# ∈ xx#, so
xx# = {t : (x, x#, t) ∈ ∆}. For x ∈ A, we have A : x = {y : (x, t, y) ∈ ∆ ⇒ t = x#}
(see [1]). Thus A : x = {y : yx = {x}} and so A : x is the set of all elements which fix
x (see [7]). We note that A : x ⊆ xx#. Clearly x# /∈ A : x for x 6= e but x# may well
be an element of xx#.

For x, y ∈ A∗ = A − {e}, define a relation ∼ by x ∼ y if y# /∈ A : x and
x# /∈ A : y. Since x# /∈ A : x, x ∼ x. Clearly x ∼ y =⇒ y ∼ x. However, in general ∼
may not be transitive.

Definition 1. We say that a geometry is Lt-connected (locally transitively
connected) if

i) xx# − {x#} = A : x (i.e. every element of xx# except possibly x#, fixes x),

ii) ∼ defined above is transitive.

Remark 1. Supposing i), the equivalence relation ∼ compares with the relation
of conjoint points of [3] or the relation of not begin on a degenerate line of [5]. In fact,
suppose x# = x for all x (which as shown below gives the join of projective spaces). If
x ∼ y, x 6= y (i.e. x and y are conjoint), then for any t ∈ A with (x, y, t) ∈ ∆, t /∈ A : y
since y# = y 6= x and y /∈ A : t, since if x = t# = t, then y ∈ xx# − {x} = A : x
contradicting x ∼ y. So t is a third point conjoint to x and y. In other words, the line
determined by x and y is not degenerate.

In the next we assume that the geometry is Lt-connected.

Proposition 1. Let B = A : x − {x}, for x ∈ A∗. Then B is a subgeometry
of A.

P r o o f. e ∈ B, since e ∈ A : x. Let e 6= y ∈ B. Then (x, x#, y) ∈ ∆ implies
(x, x#, y#) ∈ ∆, so y# ∈ xx#. But y# 6= x#, so y# ∈ xx# − {x#} = A : x. Finally,
suppose (x1, x2, y) ∈ ∆, x1, x2 ∈ B. To show that y ∈ A : x, let (x, t, y) ∈ ∆. Then

(y, x, t), (y, x1, x2) ∈ ∆ implies ∃z ∈ A with (z, x#
1 , x), (z, x2, t

#) ∈ ∆. x#
1 ∈ B ⊆ A : x,

so z = x#. Substituting this value of z and noting that x#
2 ∈ A : x, we get t = x#.

Thus y ∈ A : x. But y = x easily gives a contradiction, so y ∈ A : x − {x} = B. So B
is a subgeometry of A.

A routine check on the cases x ∼ x# and x 6∼ x# results in:

Lemma 1. ∀x ∈ A∗, y ∈ A : x, y 6= x ⇒ y ∈ A : x#.

Proposition 2. Suppose ZA = {{e}, A}. Then A : x ⊆ {e, x}∀x ∈ A∗ and
hence xx# ⊆ {e, x, x#}.

P r o o f. We have ZA = {B : B is a subgeometry of A and A − B∗ is a weak
subgeometry} (see [1]). We let B = A : x−{x} and show that B ∈ ZA. By Proposition

1, B is a subgeometry. Consider A−B∗. Let (y1, y2, y) ∈ ∆, y1, y2 ∈ A−B∗, y2 6= y#
1 .

Clearly y ∈ A−B∗ if y is y1 or y#
1 or y2 or y#

2 or x. So suppose y is different from these.
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Since in (y1, y2, y) ∈ ∆, y2 6= y#
1 , it is easily seen that y#

1 /∈ A : y and y# /∈ A : y1 and
so y ∼ y1. Now, if y1 ∼ x, then x ∼ y so y# /∈ A : x giving y# ∈ A − A : x ⊆ A − B∗.
So suppose y1 6= x. Then either y#

1 ∈ A : x or x# ∈ A : y1. But y#
1 /∈ A : x unless

y1 = x which it is not. Thus y#
1 /∈ A : x and so x# ∈ A : y1. Now just suppose

y ∈ A : x. Then since y 6= x, by Lemma 1, y ∈ A : x#. Thus y ∈ A : x, x# ∈ A : y1

and it is routine to check that this implies y ∈ y1y
#
1 . But y 6= y1, so y ∈ A : y1 giving

y2 = y#
1 a contradiction. So y /∈ A : x and hence y ∈ A − B∗. Thus A − B∗ is a weak

subgeometry and we have B ∈ ZA = {{e}, A}. Since x /∈ B, B 6= A, so B = {e}, i.e.
A : x − {x} = {e} giving A : x ⊆ {e, x}. �

If a set A = {a, a#, e} is made into a geometry by taking (e, e, e), (a, a#, e),
(a, a, a#), (a#, a#, a) and any permutation of these to be in ∆, the geometry is easily
seen to be isomorphic to the orbit space Q/Q+ where Q is the field of rational numbers
and Q+ the multiplicative group of positive rationals (in fact, to F/F+ where F is any
ordered field and F+ is the group of positive elements).

Theorem 1. Let A be Lt-connected geometry with ZA = {{e}, A},

i) If x# = x∀x ∈ A, then A is projective,

ii) If ∃x ∈ A with x 6= x#, then

(a) A is isomorphic to Q/Q+ if x 6∼ x#

(b) A is sharp (i.e. a group) if x ∼ x#.

P r o o f. i) We have x# = x∀x ∈ A. Let (x, x, y) ∈ ∆. Then by Proposition 2,
y ∈ xx# ⊆ {e, x}, so y = x or y = e. Hence A is projective.

ii) ∃x ∈ A with x# 6= x.

(a) Suppose x 6∼ x#. Then either x ∈ A : x or x# ∈ A : x#. In
either case (x, x#, x) ∈ ∆ and so both x ∈ A : x and x# ∈ A : x#. We claim
A = {e, x, x#}. Suppose y ∈ A, y different from e, x, x#. Then y# /∈ A : x ⊆ {e, x}
and x# /∈ A : y ⊆ {e, y}. So y ∼ x. Similarly y ∼ x# giving x ∼ x# a contradiction.
So A = {e, x, x#}. Since x ∈ A : x, (x, x, x) /∈ ∆. Now it is easy to see that A is
isomorphic to Q/Q+.

(b) x# ∼ x. Let (z, z#, y) ∈ ∆, zy ∈ A. For sharpness, we need to
show that y = e. First consider z = x. Then y ∈ xx# ⊆ {e, x, x#}. If y = x,
then since x 6= x#, x ∈ A : x which contradicts x ∼ x#. So y 6= x and similarly
y 6= x# giving y = e. Now if z is any other element with z 6= z#, then z ∼ z#, since
otherwise z 6∼ z# would reduce to case (a) which it is not. So z 6= z# and z ∼ z# gives
y = e as in the case of z = x. So it remains to consider the case when z = z# 6= e.
Thus (z, z, y) ∈ ∆ and y ∈ {e, z}. Suppose y = z giving (z, z, z) ∈ ∆. ∃t ∈ A with
(z, x, t) ∈ ∆. Hence t 6= x# since otherwise z = e from above. So (z, x, t), (z, z, z) ∈
∆ ⇒ ∃s ∈ A with (s, z, x), (s, z, t#) ∈ ∆. Again (z, x, t), (z, x, s) ∈ ∆ ⇒ ∃ω ∈ A with
(ω, x#, x), (ω, s, t#) ∈ ∆. From (x#, x, ω) ∈ ∆ we get ω = e. So s = t and (t, z, t#) ∈ ∆
gives z ∈ {e, t, t#}. Since z 6= e, we have z = t = t#. Also (z, x, z) ∈ ∆ gives x ∈ {e, z}
and so x# = x a contradiction. Thus y = e in all cases proving that A is sharp. �
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Theorem 2. Let A be an Lt-connected geometry. Then A in its join decom-
position is a join of geometries each of which is either projective, sharp or isomorphic
to Q/Q+.

P r o o f. ∀i = B ∈ Z∗

A
, ZAi

= {{e}, Ai} (see [1]). Each weak subgeometry
Ai, i ∈ Γ = Z∗

A
is Lt-connected (which can be easily seen by noting that for x ∈ Ai, Ai :

x = Ai ∩ (A : x)). So by Theorem 1, each Ai is as stated in the theorem. �

Corollary 1. Any Lt-connected geometry with x# = x for all x is a join of
projective spaces.

It should also be noted that a join of projective spaces is a (multi) group in the
terminology of [6].

Remark 2.

(i) If a geometry is a join of geometries which are either projective, sharp or
isomorphic to Q/Q+, then it is easily seen that such a geometry is Lt-connected. Hence
the condition in Theorems 1 and 2 is both necessary and sufficient.

(ii) If A is a probability group, then there is a natural induced geometry
structure on A (see [1]). However, the converse is not true. In fact the geometry
Q/Q+ = {[0], [1], [−1]} is not induced by any probability structure. Given two ele-
ments [1], [1], we have a unique element [−1] such that ([1], [1], [−1]) ∈ ∆. Hence if this
geometry were induced by a probability structure p on A, then p[1]([1], [1]) = 1 which
contradicts Proposition 3.2 (2) of [1]. Now, since the decomposition of a probability
group as a geometry gives it as a join of probability groups (see [1]), we call a prob-
ability group Lt-connected if the induced geometry is Lt-connected. Therefore, from
the above theorem and the observation made here, we get that every probability group
which is Lt-connected is a join of probability groups each of which is either a group or
a projective space.

(iii) A geometry is called semi-sharp if (a, b, c), (a, b, d) ∈ ∆, b 6= a# implies
c = d (i.e. ab gives a unique element for b 6= a#). It is a routine check to see that every
semi-sharp geometry is Lt-connected. It is also easily seen that a semi-sharp geometry
which is projective but not sharp (i.e. not a vector space over Z2) must consist of two
elements (i.e. is a projective point). Hence we get that every semi-sharp geometry is a
join of geometries each of which is either a group, a projective point or isomorphic to
Q/Q+. For an example, the geometry of conjugacy classes of the group of quaternion
units is semi-sharp and is a join of groups isomorphic to Z2 (the group of order two)
and Z2 × Z2 (the non-cyclic group of order 4).
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