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A MODEL OF TIME WITH WALKER’S DEFINITION OF

INSTANTS BY EVENTS

ANDREANA S. MADGUEROVA

This article constructs a model of Time, using Walker’s definition of instants by
events. It follows from the proposed system of axioms on the events, that the instants,
constructed by events after Walker’s definition, compose an open-ended linear contin-
uum with a ”dense” sequence of instants, i. e. Time continuum has the properties,
characterizing the real line. Here the exposition is based only on Walker’s definition of
instants without using Russell’s definition of instants. The used here system of axioms
is simpler than those preceding it in the literature and it treats only events.

The attemp of mathematical contructions of the instants of Time by events
follow Russell and Whitehead [1,2]. Such constructions of Time are elaborated also
by Robbs [3], N. Wiener [4], Walker [5], Whitrow [6], Thomason [7]. Two models
of Time, based on Russell’s definition of the instants by events were constructed in
papers [8-10]. Physiologists, psychologists and philosophers agree that the conception
of the events is more primary and fundamental whereas the instants are intuitive-
mental constructions. Russell and Whitehead have posed the problem so as to obtain
the construction of the instants from the events in a logical-mathematical way ([1,2,6]).
The two different models proposed here are based on Walker’s definition and have
more simple requirements with respect to events (cf. [6,7]). (For instance here only
the relations ≺ and ⊙ are required in the set of the events, whereas the paper [7] uses
relations ≺1, ≺0, ≺, ⊙. Here the constructions and proofs use only Walker’s definition
of the instants (without using Russell’s definition of the instants also (cf. [7]).

The model of Time constructed with Walker’s definition of instants (see [5-7])
is based on a different system of axioms on the events. It follows from this system, that
the instants, constructed by events after Walker’s definition [5-7], have the discussed
in the literature [6,7] properties of the continuum of Time of Mathematical Physics,
namely that instants compose an open-ended linear continuum with a ”dense” sequence
of instants, which are characterizing properties of the real line.

Let us denote by E the whole complex of all events.
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The model of Time constructed with Walker’s definition of instants
by events. The model of Time here consists of Walker’s definition [5-7] of instants by
events and by the following axioms on the events.

Axiom A (B. Russell [2]).
1. E 6= Ø. For any two events either one of them is ”before” (”earlier than”,

≺) the other or in the opposite case they are ”simultaneous” (at least partially) (i.e.
they ”overlap”, i.e. are ”contemporary”, ⊙). This is, for any two events a, b ∈ E one
and only one of the following statements is true: either a ≺ b or b ≺ a, or a ⊙ b; We
have a ⊙ a for ∀a ∈ E.

2. If a ≺ b, b ⊙ c, c ≺ d, then a ≺ d for any events a, b, c, d ∈ E.

It follows from Axiom A that the relation ≺ is transitive, i.e. if a ≺ b and b ≺ d,
then a ≺ d, where a, b, d ∈ E . It also follows that if a⊙ b, then b⊙ a. Thus the set E of
all events is partially ordered by the relation ≺.

Axiom B . There exists a sequence K of events from E, such that for any
arbitrarily fixed events a, b ∈ E with a ≺ b there is an event k ∈ K with a ≺ k ≺ b.

Axiom C . For any arbitrarily fixed event a ∈ E there are events b, c ∈ E such
that b ≺ a ≺ c

Axiom D . Whenever c ≺ a ≺ b ≺ d (a, b, c, d ∈ E), then there is an event s,
simultaneous with a and b, a ⊙ s, b ⊙ s, for which c ≺ s ≺ d.

Remark. There exist complexes E , satisfying Axioms A, B, C, D. Such is the
set of all compacts (i.e. closed and finite) nonempty segments of the real line.

We shall formalize Walker’s construction of the instants by events

Definition of the instants (after Walker [5]). Let (P,Q,R) be a triple of
subsets P,Q,R of E, such that

(i) P,Q,R are nonempty, P 6= Ø, Q 6= Ø, R 6= Ø.

(ii) Each event of P is before any event of R.
(iii) Any event of Q is simultaneous with an event of P and with an event of R.

There exist such triples after Axioms A, B, C, D.
Let W be the set of all such triples (P,Q,R). We introduce a partial order in

W by inclusions (in the sense of the Set Theory) of the triples in W: Let w1,w2 ∈ W,
w1 = (P1, Q1, R1), w2 = (P2, Q2, R2). We shall deem that w2 follows (w1, w1 ≺ w2),
iff P1 ⊂ P2, Q1 ⊂ Q2, R1 ⊂ R2.

The maximal elements of W will be called instants (moments) (after Walker)
and will be denoted by small Greek letters. The class of all instants will be denoted
by W.

Theorem 1. W is not empty, i.e. W has at least one element.
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Remark. If α = (P,Q,R) ∈ W and the event a is simultaneous with any
event q ∈ Q, q ⊙ a, then we shall say that the instant α belongs to the event a, α ∈ a.

Theorem 2. For any fixed event a ∈ E there exists an instant α, belonging to
a, α ∈ a.

Theorem 3. Let a and b be arbitrarily fixed simultaneous events, a, b ∈ E.
Then there exists at least one instant γ with γ ∈ a, γ ∈ b.

Theorem 1-3 are formulated and proved separately because these results have
been widely discussed in the literature (see [2,3,7]). In some papers these results are
axioms (cf. [2,3,6]).

The order in W. We shall say that the instant α is before (earlier than),
the instant β, (α ≺ β) if there are events qα ∈ Qα, qβ ∈ Qβ, with qα ≺ qβ, where
α = (Pα, Qα, Rα), β = (Pβ , Qβ , Rβ). If any two events qα ∈ Qα and qβ ∈ Qβ are
simultaneous, qα ⊙ qβ, then we shall say that α = β. (It is not necessary to have
Pα = Pβ , Qα = Qβ, Rα = Rβ).

Proposition 4. The relation ”=” among instants is transitive, i.e. if α = β,
β = γ with α, β, γ ∈ W, then α = γ. Moreover, α = α for any instant α ∈ W, this
is any two events q′α, q′′α ∈ Qα are simultaneous, q′α ⊙ q′′α where α = (Pα, Qα, Rα) is an
arbitrarily fixed instant of W.

Proposition 5. Let α = (Pα, Qα, Rα) is an arbitrarily fixed instant of W.
Then we have

a) Pα ∪ Qα ∪ Rα = E;
b) Pα ∩ Qα = Ø; Qα ∩ Rα = Ø; Pα ∩ Rα = Ø;
c) Any two events q′α and q′′α of Qα are simultaneous, q′α ⊙ q′′α.

Proposition 6. If the instant α is before the instant β, α ≺ β, then it is not
true that β ≺ α.

Proposition 7. Time order of the instants of W is a transitive relation.

Proposition 8. Time order of the instants of W is a linear order.

Moreover, the axioms A - D ensure all desired [2,6,7] properties of Time con-
tinuum for the class W of all instants. This is, W is an open-ended linear continuum
with a ”dense” sequence of instants, which are characterizing properties of the real
line. Thus, the properties of Time continuum T , used in Mathematical Physics, are the
following after [6,7]:

1. T is linearly ordered;
2. T is a ”dense” set, i.e. if the instant π is earlier than the instant κ, then

there exists at least one instant ρ between π and κ, π 6= ρ, κ 6= ρ.
3. T satisfies Dedekind’s postulate, this is: If T1 and T2 are two non-empty

disjoint parts of T , such that each instant of T belongs either to T1 or T2 and each
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instant of T1 is before any instant of T2, then there exists at least one instant τ ∈ T ,
such that every instant before τ belongs to T1 and every instant after τ belongs to T2.

4. T contains a countable subset G, such that for any two different instants π

and κ of T there exists at least one instant ρ of G, which is between π and κ, π 6= ρ,
κ 6= ρ.

The property 4 immediately implies the property 2 of T . These four properties
of T are satisfied also by a model of Time, which has the earliest and the last moments,
i.e. by a model of Time with a beginning and an end. Thereofore one more property
should be added [7, 8-10]:

5. For any arbitrarily fixed moment τ of T there exist instants τ1 and τ2, such
that τ is between τ1 and τ2, τ 6= τ1, τ 6= τ2.

Axioms A-D ensures the following theorems.

Theorem 9. The complex W of all instants is an open-ended linear continuum
with a dense sequence of instants, i.e. W has the properties 1-5 of Time continuum T

of Mathematical Physics, which are properties typical of the real line.

The author has constructed another model of Time, based on Walker’s definition
of the instants, in which model not all the elements are bounded, as in the exposed
here model.

Proofs for the model of time (with Walker’s definition of instants).
We shall use Zorn’s Lemma in the proofs of Theorems 1-3. Let us remind it:

Lemma of Zorn (Zorn [9]) Let X be a partially ordered nonempty set. If any
linearly ordered subset A of X is upper bounded in X, then X contains at least one
maximal element.

P r o o f o f T h e o r e m 1. Evidently, W is a partially ordered complex. We
shall prove that W is not empty. There exists at least one event a after Axiom A.
There is an event b with a ≺ b after Axiom C. Applying Axiom D, we get an event s

with a ⊙ s, b ⊙ s. We have that the triple ({a}, {s}, {b}) ∈ W.
Now, let A be a linearly ordered subset of W, A = {(Pi, Qi, Ri), i ∈ I}, where

I is a complex of indices. Let us examine the triple

w∗ = (P,Q,R), P =
⋃

i∈I

Pi, Q =
⋃

i∈I

Qi, R =
⋃

i∈I

Ri.

We shall prove that w∗ ∈ W, i.e. the requirements (i)-(iii) are satisfied:
(i) If A 6= Ø, then P 6= Ø, Q 6= Ø, R 6= Ø;
(ii) Let p ∈ P , r ∈ R. We shall prove that p ≺ r. Evidently, p = pi′ and

r = ri′′ for some i′, i′′ ∈ I. Since A is linearly ordered, then one of the triple wi′ =
(Pi′ , Qi′ , Ri′), wi′′ = (Pi′′ , Qi′′ , Ri′′) follows the other. If wi′′ � wi′ , then we have
pi′ ∈ Pi′ , ri′′ ∈ Ri′ , which implies p ≺ r. If wi′ � wi′′ , then we have pi′ ∈ Pi′′ , ri′′ ∈ Ri′′

which implies p ≺ r again.
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(iii) Now, let q ∈ Q. Thus q = qi0 for some i0 ∈ I. Since w0 = (Pi0 , Qi0 , Ri0) ∈
W, then there exist events pi0 ∈ Pi0 , ri0 ∈ Ri0 with pi0 ⊙ q, ri0 ⊙ q. But we have also
pi0 ∈ P , ri0 ∈ R due to the construction of w∗. Therefore the triple w∗ ∈ W.

Evidently, this triple w∗ upper bounds A. Therefore there exists at least one
maximal element α of W after Zorn’s Lemma. We have α ∈ W by the definition
of W. �

P r o o f o f T h e o r em 2. Let us fix an event b ≻ a. Such an event b exists
after Axiom A. Let s be an event, simultaneous with a and b. Such an event exists
after Axioms C and D. Then the triple w0 = ({a}, {s}, {b}) ∈ W. Let V be the subset
of W which contains all triples w ∈ W with w = (P,Q,R) ≻ w0 = ({a}, {s}, {b}) and
such that any event of P is not after the event a, i.e. either p⊙a or p ≺ a for any event
p ∈ P .

Evidently, V is not an empty partially ordered subset of W with the same
relation of order ≺. We shall see that V satisfies the requirement of Zorn’s Lemma.
Let A = {(Pi, Qi, Ri), i ∈ I} be nonempty linearly ordered subset of V, where I is a
complex of indices. Let us examine the triple w∗ = (P,Q,R) with

P =
⋃

i∈I

Pi, Q =
⋃

i∈I

Qi, R =
⋃

i∈I

Ri.

We have w∗ ∈ W since the requirements (i)-(iii) are satisfied: We have
(i) P 6= Ø, Q 6= Ø, R 6= Ø as A is not empty;
(ii) If p ∈ P , r ∈ R, then p ∈ Pi′ , r ∈ Ri′′ for some i′, i′′ ∈ I. A is linearly

ordered. This is, we have either wi′ � wi′′ and p ∈ Pi′′ , r ∈ Ri′′ , so p ≺ r, or wi′′ � wi′

and p ∈ Pi′ , r ∈ Ri′ , thus p ≺ r also.
(iii) Let q ∈ Q be arbitrarily fixed. Then q belongs to some Qi0 , i0 ∈ I, wi0 =

(Pi0 , Qi0 , Ri0) ∈ W. That is why there exist events p ∈ Pi0 , r ∈ Ri0 , simultaneous with
q, p ⊙ q, r ⊙ q. Thus the proof of w∗ ∈ W id completed.

Moreover, w∗ ∈ V since we have: 1) It is true that w∗ � w0, since wi � w0 for
∀i ∈ I; 2) Let the event p ∈ P be arbitraly fixed. Then p ∈ Pi0 for some i0 ∈ I. Since
(Pi0 , Qi0 , Ri0) ∈ V, hence the event p cannot be after the event a, i.e. either p ⊙ a or
p ≺ a.

Evidently, the triple w∗ upper bounds A. Then V contains at least one maximal
element α after Zorn’s Lemma. Obviously, α is a maximal element of W also. This is,
α is an instant of W. Moreover, we have α ∈ a after the construction of V. �

P r o o f o f T h e o r e m 3. Let us denote by Da (resp. by Db) the set of all
events da (resp. db) which are after the event a (resp. b). There exist the following
three cases only: I. We have a ≺ db, b ≺ da for any da ∈ Da, ∀db ∈ Db. Let a = c,
da = d for an arbitrarily fixed event da ∈ Da, and let s be an event simultaneous with
a and d. We have c ≺ d, c ⊙ s, d ⊙ s.

II. There is an event d′a ∈ Da with b⊙ d′a. Then we have a ≺ d′a, d′a ⊙ b, a ≺ db.
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It follows applying Axiom A, point 2, that a ≺ db for ∀db ∈ Db. Let us denote a by c,
b by s and d′a = d. We have c ≺ d, c ⊙ s, d ⊙ s.

III. There is an event d′b ∈ Db with a⊙ d′b. Then we have b ≺ d′b, d′b ⊙a, a ≺ da.
Thus we obtain b ≺ da for ∀da ∈ Da, applying Axiom A, point 2. Let us denote b by c,
a by s and d′b by d. We have c ≺ d, c⊙ s, d⊙ s. Thus we conclude in each of the cases
I-III that the triple w0 = (P 0, Q0, R0) with P 0 = {c}, Q0 = {s}, R0 = {d} belongs
to W.

Let us study the partially ordered complex V = {w = (P,Q,R) ∈ W, w � w0

and any event of P is not after the event c } with the order, induced by the order of W.
V satisfies the requirement of Zorn’s Lemma. Indeed, let A = {wi}i∈I be a

nonempty linearly ordered subset of V, where wi = (Pi, Qi, Ri) and let I be a complex
of indices.

Let us denote by w∗ the triple w∗ = (P,Q,R) with

P =
⋃

i∈I

Pi; Q =
⋃

i∈I

Qi; R =
⋃

i∈I

Ri.

We shall prove that the triple w∗ ∈ W, since the requirements (i)-(iii) hold
for w∗:

(i) Since A is not empty we have P 6= Ø, Q 6= Ø, R 6= Ø.
(ii) If p ∈ P , r ∈ R, then p ∈ Pi′ , r ∈ Ri′′ for some i′, i′′ ∈ I. In the case

wi′ � wi′′ , we get p ∈ Pi′′ , r ∈ Ri′′ , and therefore p ≺ r. In the case wi′′ ≺ wi′ , we
obtain p ∈ Pi′ , r ∈ Ri′ , and thus p ≺ r.

(iii) Let q ∈ Q, then q ∈ Qi0 for some i0 ∈ I. That is why there exist events
p ∈ Pi0 , r ∈ Ri0 , such q ⊙ p, q ⊙ r. It follows by the construction of w∗ that p ∈ P ,
r ∈ R. Thus we obtain w∗ ∈ W.

Moreover, w∗ ∈ V since the following statements hold:
1. We have c ∈ P , s ∈ Q ,d ∈ R as c ∈ Pi, s ∈ Qi, d ∈ Ri for ∀i ∈ I. Thus we

get w∗ � w0.
2. Any event p ∈ P cannot be after the event c since p ∈ Pi0 for some i0 ∈ I

and wi0 ∈ V. Thus we obtain w∗ ∈ V.
Applying Zorn’s Lemma to V, we conclude that there exists a maximal element

γ of V. Evidently γ is a maximal element of W also. Thus γ is an instant, for which
γ ∈ a, γ ∈ b, after the contruction of V. �

P r o o f o f P r o p o s i t i o n 5. P o i n t a) Let a be an arbitrarily fixed event
of E . At first we shall discuss the following cases I-III: There exists an event p0 ∈ Pα,
such that a ≺ p0. Then a ∈ Pα in this case, after the maximality of the instant α in
W.

II. There exists an event r0 ∈ Rα with r0 ≺ a. Then a ∈ Rα, after the
maximality of the instant α of W.

III. There exist events p1 ∈ Pα, r1 ∈ Rα with p1⊙a, r1⊙a. In this case a ∈ Qα,
again after the maximality of the instant α ∈ W.
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Let a be an event, for which no requirement of any of the cases I-III is satisfied.
Then we have either p0⊙a or p0 ≺ a for each event p0 ∈ Pα. If a⊙p0 for some p0 ∈ Pα,
then a ≺ r for all r ∈ Rα, since the event a does not satisfy the requirements of the
cases II and III. Therefore a ∈ Pα, after the construction of α.

Now let us eliminate the previous case too. So, the event a is not simultaneous
with any of the events of Pα. Since the case I is eliminated for the event a as well, then
a ≻ p for ∀p ∈ Pα. Therefore a ∈ Rα in this case, after the construction of α and after
the maximality of α in W. Thus we obtain Pα ∪ Qα ∪ Rα = E .

The assertion of Point b) is evident after the construction of W.

Point c). Let events q′α, q′′α ∈ Qα. Then there exist events p′, p′′ ∈ Pα, r′, r′′ ∈ Rα

with p′ ⊙ q′α, r′ ⊙ q′α, p′′ ⊙ q′′α, r′′ ⊙ q′′α, after the construction of W.

Let us assume that q′α ≺ q′′α. Then we have q′α ≺ q′′α, q′′α ⊙ p′′ , p′′ ≺ r, for all
r ∈ Rα. Applying Axiom A, Point 2, we obtain that q′α ≺ r for all r ∈ Rα, which
contradicts α ∈ W. Thus the assumption q′α ≺ q′′α is not true.

Now, let us assume q′′α ≺ q′α. Since we have q′′α ≺ q′α, q′α ⊙ p′, p′ ≺ r, ∀r ∈ Rα,
hence q′′α ≺ r for all r ∈ Rα. This contradicts α ∈ W again.

Thus only the relation q′α ⊙ q′′α is possible.

P r o o f o f P r o p o s i t i o n 4. We have α = α after the definition of the
relation ”=” and after the already proved item c) of Proposition 5.

Also, if α = β, then β = α, after the definition.

Now let α = (Pα, Qα, Rα), β = (Pβ , Qβ, Rβ), γ = (Pγ , Qγ , Rγ) α = β, β = γ.
Let us assume α 6= γ. Then there exist events q∗α ∈ Qα, q∗γ ∈ Qγ which are not
simultaneous. Then we have either q∗α ≺ q∗γ or q∗γ ≺ q∗α. Since µ = ν for some instants
µ, ν, implies also ν = µ, it is sufficient to reject the possibility q∗α ≺ q∗γ . If q∗α ≺ q∗γ , then
there exists an event d with q∗α ≺ d ≺ q∗γ , after Axiom B.

We shall prove that d ∈ Qβ. Let us assume pβ ≺ d for all pβ ∈ Pβ. Then we
have d 6∈ Pβ, d 6∈ Qβ and d ∈ Rβ, after the maximality of the instant β in W. Therefore
there exists an event s with s ⊙ d, s ⊙ p∗β for some fixed p∗β ∈ Pβ and s ≺ q∗γ , after
Axiom D. The maximality of β in W implies s ∈ Qβ. But β = γ, which yields s ⊙ q∗γ .
The contradiction obtained proves that d 6∈ Rβ and d ⊙ p∗β for some event p∗β ∈ Pβ .

Now, let us assume that d ≺ rβ for all rβ ∈ Rβ. Then d ∈ Pβ , after the
maximality of β in W, and there exists an event v with q∗α ≺ v, v ⊙ d, v ⊙ r∗β for
some arbitrarily fixed event r∗β of Rβ. The last two relations involve v ∈ Qβ, after
the maximality of β in W. Therefore we must have v ⊙ q∗α, since α = β, whereas it
holds q∗α ≺ v. The contradiction thus obtained proves that d 6∈ Pβ and d⊙ r∗β for some
r∗β ∈ Rβ .

So we have d ⊙ p∗β, d ⊙ r∗β, p∗β ∈ Pβ, r∗β ∈ Pβ . Therefore d ∈ Qβ, after the
maximality of β in W.

Then the relations d ∈ Qβ and α = β prove that d ⊙ q∗α, while we have q∗α ≺ d.
The contradiction obtained implies the impossibility of q∗α ≺ q∗γ . After the symmetry
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of ”=”, this is sufficient to assert that α = γ. �

P r o o f o f P r o p o s i t i o n 6. Let α = (Pα, Qα, Rα), β = (Pβ , Qβ , Rβ), be
instants, α ≺ β, with q′α ≺ q′β, q′α ∈ Qα, q′β ∈ Qβ. Let us assume that simultaneously
we have β ≺ α with q′′β ≺ q′′α, q′′α ∈ Qα, q′′β ∈ Qβ. Therefore we have q′α ≺ q′β, q′β ⊙ q′′β,
q′′β ≺ q′′α. Axiom A, Point 2, involves q′α ≺ q′′α, whereas we have q′α⊙q′′α, after Proposition
5, Point c). The contradiction obtained proves that the assumption β ≺ α is not true. �

P r o o f o f P r o p o s i t i o n 7. Let us have α ≺ β, β ≺ γ for some instants
α = (Pα, Qα, Rα), β = (Pβ , Qβ, Rβ), γ = (Pγ , Qγ , Rγ), belonging to W, with qα ≺ q′β,
q′′β ≺ qγ for some events qα ∈ Qα, q′β, q′′β ∈ Qβ, qγ ∈ Qγ . We have q′β ⊙ q′′β after
Proposition 5, Point c). Therefore Axiom A, Point 2 implies qα ≺ qγ . Thus α ≺ γ. �

P r o o f o f Th e o r em 8. It is sufficient to show after proving Propositions
6 and 7, that if µ and ν are arbitrarily fixed instants with µ 6= ν, then we have either
µ ≺ ν or ν ≺ µ. Let µ = (Pµ, Qµ, Rµ), ν = (Pν , Qν , Rν). Since µ 6= ν, then there exists
at least one pair of events q∗µ ∈ Qµ, q∗ν ∈ Qν , which are not simultaneous. Then we
have only two possibilities: 1. Either q∗µ ≺ q∗ν , or 2. q∗ν ≺ q∗µ. In the first case we have
µ ≺ ν from the definition of the order of W. In the second case we have ν ≺ µ. �

Lemma 10. Let instant α = (Pα, Qα, Rα) belongs to the event q. If the event
b is before q, b ≺ q, then b ∈ Pα. If c is an event after q, q ≺ c, then c ∈ Rα.

P r o o f. Since α ∈ q, hence b 6∈ Qα, c 6∈ Qα, as q should be simultaneous with
any event of Qα. We shall prove that b 6∈ Rα. Let us assume the contrary. Then p ≺ b

for all p ∈ Pα. Let us fix one event p′ ∈ Pα. Since we have p′ ≺ b ≺ q, hence there is
an event s with s ⊙ p′, s ⊙ b, s ≺ q. But α is an instant, i.e. α is a maximal element
of W. Hence s ∈ Qα, as s ⊙ p′, s ⊙ b, p′ ∈ Pα, b ∈ Rα. Moreover, α ∈ q, thus q

should be simultaneous with any element of Qα. So q⊙ s and s ≺ q. The contradiction
obtained proves that b 6∈ Rα. Since we have b 6∈ Qα too, then b ∈ Pα, according to the
maximality of α in W.

Now we shall prove, that c 6∈ Pα. Let us assume the contrary. Thus c ≺ r for all
r ∈ Rα. Let us fix one event r′ ∈ Rα. There exists an event s′ with s′⊙r′, s′⊙c, s′ ≻ q,
since q ≺ c ≺ r′ and Axiom D holds. We get s′ ∈ Qα according to the maximality of α

in W and s′ ⊙ c, c ∈ Pα, s′ ⊙ r′, r′ ∈ Rα. Therefore we obtain q ⊙ s′ and q ≺ s′. The
contradiction thus obtained proves that c 6∈ Pα. But c 6∈ Qα. Then c ∈ Rα after the
maximality of α in W. �

Lemma 11. Let the instant α belongs to the event q. If β is an instant,
belonging to the event b before q, b ≺ q, then β ≺ α.

If γ is an instant, belonging to the event c after q, q ≺ c, then α ≺ γ.

P r o o f. Let α = (Pα, Qα, Rα), β = (Pβ , Qβ , Rβ), γ = (Pγ , Qγ , Rγ). Applying
the Axiom B, we get the existence of events a′, a′′, b′, b′′, c′, c′′, k, l with b′ ≺ b ≺ b′′ ≺
k ≺ a′ ≺ q ≺ a′′ ≺ l ≺ c′ ≺ c ≺ c′′. We have b′ ∈ Pβ , b′′ ∈ Rβ, a′ ∈ Pα, a′′ ∈ Rα,
c′ ∈ Pγ , c′′ ∈ Rγ after Lemma 10. Therefore there exist events s′,s′′,s′′′ with
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s′ ⊙ b′ s′′ ⊙ a′ s′′′ ⊙ c′

s′ ⊙ b′′ s′′ ⊙ a′′ s′′′ ⊙ c′′

s′ ≺ k k ≺ s′′ ≺ l l ≺ s′′′

Thus we obtain s′ ∈ Qβ, s′′ ∈ Qα, s′′′ ∈ Qγ , s′ ≺ s′′ ≺ s′′′. Hence β ≺ α ≺ γ. �

Lemma 12. Let α, β, γ be instants with α ≺ β ≺ γ. Then there exist events
a, b′, b′′, c with α ∈ a, β ∈ b′, β ∈ b′′, γ ∈ c and a ≺ b′, b′′ ≺ c. We have for any such
events a and c that a ≺ c.

P r o o f. Let α = (Pα, Qα, Rα), β = (Pβ , Qβ, Rβ), γ = (Pγ , Qγ , Rγ). The
existence of events a ∈ Qα, b′, b′′ ∈ Qβ, c ∈ Qγ with a ≺ b′, b′′ ≺ c follows by the
definition of the relation ”≺”. Now, let a, b′, b′′, c be arbitrarily fixed events, satisfying
the requirements of Lemma 12. We must prove a ≺ c. It is sufficient to prove the
impossibility of the cases c ≺ a and a ⊙ c. Let us assume that c ≺ a. Then we get
γ ≺ α, according to Lemma 11. But γ ≺ α contradicts the conditions of Lemma 12.
Thus the assumption c ≺ a is not true. Now, let us assume that a⊙c. Then, Theorem 3
involves the existence of an instant ξ ∈ a and ξ ∈ c. Since a ≺ b′, ξ ∈ a, β ∈ b′, hence
ξ ≺ β after Lemma 11. As b′′ ≺ c, β ∈ b′′, ξ ∈ c, then β ≺ ξ. Therefore ξ ≺ β ≺ ξ. The
contradiction obtained proves that the case a⊙ c is not possible. Thus it remains only
a ≺ c.

P r o o f o f Th e o r em 9.
I. W is linearly ordered after Theorem 8.
II. W has the property 4 of T : Let K be a fixed sequence of events from Axiom

B. Each arbitrarily fixed event k ∈ K defines at least one instant κ ∈ k, according to
Theorem 2. Let us fix arbitrarily such an instant κ ∈ k. Let K be the sequence of these
instants κ, (k → κ), when k ranges K.

Let α and β be instants of W with α ≺ β, α = (Pα, Qα, Rα), β = (Pβ , Qβ, Rβ)
and let qα ≺ qβ for some events qα ∈ Qα, qβ ∈ Qβ. Axiom B implies the existence
of an event k0 ∈ K with qα ≺ k0 ≺ qβ. Let κ0 ∈ k0 be the chosen instant of K,
corresponding to k0. Further on, we have α ∈ qα, β ∈ qβ, κ0 ∈ k0. Lemma 11 implies
that α ≺ κ0 ≺ β. Thus the sequence K is a dense sequence of instants.

III. W has the property 5 of T , i.e. W is open-ended: Let α be an arbitrarily
fixed instant of W, α = (Pα, Qα, Rα). Let q be an arbitrarily fixed event of Qα. There
exist events m and n with m ≺ q ≺ n, after Axom C. Theorem 2 implies the existence
of instants µ ∈ m, ν ∈ n. Then we have µ ≺ α ≺ ν after Lemma 11 as α ∈ q. Therefore
W has the property 5 of T .

IV. We shall prove that W is a continuum: Let W1 and W2 be two disjoint
(W1 ∩W2 = Ø) nonempty parts of W, whose union is W, (W1 ∪W2 = W), and each
instant of W1 is before any instant of W2. We must prove the existence of an instant γ,
such that each instant before γ belongs to W1 and each instant after γ belongs to W2.

Let ε ∈ W1, κ ∈ W2. Since W1 and W2 are nonempty, we can choose and fix
such instants. Let ρ ≺ ε ans κ ≺ δ. Such instants ρ, δ exist after the proved property 5
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of W. Let r, e,m, k, n, d be events with ρ ∈ r, ε ∈ e, m ∈ K, n ∈ K, κ ∈ k, δ ∈ d and
r ≺ m ≺ e, k ≺ n ≺ d. Here K is the sequence from Axiom B. Let µ, ν be arbitrarily
fixed instants of m and n, respectively, µ ∈ m, ν ∈ n.

Further on, the events m and n have the following properties:

10. m ≺ n (after Lemma 12).

20. Each instant of m belongs to W1 (since we have m ≺ e, ε ∈ e, ε ∈ W1).

30. Each instant of n belongs to W2 (since we have k ≺ n, κ ∈ k, κ ∈ W2).

Any pair of events m and n, having the properties 10-30, will be denoted by
m&n. Let us fix such a pair a&b. Then there exists at least one event s, simultaneous
with a and b, a ⊙ s, b ⊙ s, according to Axiom D.

Let us construct the following class of events

Q = {s : ∃a, b ∈ E , a&b, s ⊙ a, s ⊙ b} .

Let P be the set of all events a, corresponding to events s of Q; let R be the
set of all events b, corresponding to events s of Q. We want to prove that the triple
Γ = (P,Q,R) ∈ W, i.e. has the properties (i)-(iii):

(i) We have shown the existence of events m,n, s with m&n, s ⊙ m, s ⊙ n.
Therefore R 6= Ø, Q 6= Ø, P 6= Ø.;

(ii) Let the events p ∈ P, r ∈ R be arbitrarily fixed. We must prove that p ≺ r.
There exist events m0, n̂ with p&n̂, m0&r, by the construction of P,Q,R. Now we
shall prove that the cases r ≺ p and p⊙r are impossible. Let us assume that r ≺ p. Let
ξ, η be instants with ξ ∈ p, η ∈ r (cf. Theorem 2). Since we have assumed that r ≺ p,
then η ≺ ξ after Lemma 11. But p&n̂ implies ξ ∈ W1 after the property 20 of p&n̂.
The relation m0&r involves η ∈ W2, according to the property 30 of m0&r. Therefore
ξ ≺ η after the choice of W1 and W2. The contradiction thus obtained proves that the
relation r ≺ p is not possible. Now, let us assume p ⊙ r. Let the instant ζ ∈ p, ζ ∈ r,
according to Theorem 3. Since we have p&n̂, then ζ ∈ W1. But since m0&r and ζ ∈ r,
then ζ ∈ W2 by the property 30 of ”&”. This contradicts W1 ∩ W2 = Ø. Thus the
assumption p ⊙ r is not true. Then it remains only p ≺ r.

(iii). Evidently this requirement is satisfied by the construction of P,Q,R.
Thus we obtain Γ ∈ W.

Let V be the subset of W of all triples w ∈ W with w � Γ. V satisfies the
requirement of Zorn’s Lemma: Let A = {wi = (Pi, Qi, Ri), i ∈ I} be a linearly ordered
nonempty subset of V. Then the triple w∗ = (P,Q,R) with

P =
⋃

i∈I

Pi, Q =
⋃

i∈I

Qi, R =
⋃

i∈I

Ri,

belongs to V. Moreover, w∗ upper bounds A. After Zorn’s Lemma V has at least one
maximal element γ. It is evident that γ is a maximal element of W too. Thus γ is an
instant, γ ∈ W.
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We shall prove that any instant ξ with ξ ≺ γ belongs to W1 and that any instant
η with γ ≺ η belongs to W2. Now, let ξ ≺ γ. Let us assume the contrary, i.e., that
ξ ∈ W2. Then we must have γ ∈ W2 by the choice of W1 and W2. Since ξ ≺ γ, there
are events r, ξ ∈ r, n ∈ K, g, γ ∈ g, for which r ≺ n ≺ g. Let ν be some fixed instant
of n. Let m be an event of W1, this is, if µ ∈ m, then µ ∈ W1. We have shown that
such events exists. We shall prove that the pair of events m and n has the properties
10-30, i.e., m&n:

Let us examine the order between m and n. If we assume that n ≺ m, since
µ ∈ m, ν ∈ n, then ν ≺ µ. But this is impossible because µ ∈ W1, ν ∈ W2. Thus the
assumption n ≺ m is not true. Now, let us assume that m ⊙ n. Then, there exists an
instant µ∗ ∈ m, µ∗ ∈ n, after Theorem 3. µ∗ ∈ m involves µ∗ ∈ W1; µ∗ ∈ n implies
W2 ∋ µ∗. But we have W1 ∩W2 = Ø. The contradiction proves that the assumption
m ⊙ n is not true. Thus, it remains m ≺ n.

Moreover, since any instant of m belongs to W1 and any instant of n belongs
to W2, hence we have m&n.

Let s be an event, simultaneous with m and n, s ⊙ m, s ⊙ n, and let s ≺ g.
Such an event s exists after Axiom D. Since s ∈ Q, then γ ∈ s. On the other hand we
have s ≺ g and γ ∈ g. This is, we must have γ ≺ γ after Lemma 11, since γ ∈ s and
γ ∈ g. This contradiction proves that the assumption ξ ∈ W2 is not true. Therefore
ξ ∈ W1 for any instant ξ with ξ ≺ γ.

The statement that η ∈ W2, whenever γ ≺ η can be proved in a similar way.
Thus Theorem 9 is true. �

Proposition 13. The instant γ, separating W1 and W2, determined by
Γ = (P,Q,R), is unique.

P r o o f. Let us assume that there are at least two such different instants. We
shall denote the first one by γ1 and the other one by γ2, i.e. γ1 ≺ γ2. Then there
exists an instant τ with γ1 ≺ τ ≺ γ2, after the properties of W, which have already
been proved. It follows from γ1 ≺ τ that τ ∈ W2. But since τ ≺ γ2, hence we have
τ ∈ W1. This contradicts W1 ∩W2 = Ø. The contradiction obtained is a proof for the
uniqueness of γ. �
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