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GEODESIC DOUBLE DIFFERENTIAL FORMS,

EULER-POISSON-DARBOUX EQUATIONS AND THE SELBERG

TRACE FORMULA FOR HYPERBOLIC SPACE FORMS

REINHARD SCHUSTER

Abstract. We derive Selberg’s trace formula for the p-spectrum of compact hy-
perbolic space forms by using orthogonal representations. We consider twisted dou-
ble differential forms in connection with Euler-Poisson-Darboux equations. This
paper is a completion and generalization of our paper [15].

1. Introduction. Selberg’s trace formula states a duality relation between
the eigenvalue spectrum of the Laplace operator on a compact hyperbolic space form
and the geometric spectrum with certain weights. Selberg was the first to reach to
the trace formula about 1950/51. The idea of taking the trace seemed quite natural,
since it seemed that to obtain individual eigenfunctions or eigenforms of the Laplace
operator would be very difficult. The trace formulas bear a very striking resemblance
to the so-called explicit formulas of prime number theory.

There are many papers on the two-dimensional case. We refer to [4,13] and
the references given there. Papers [5,7,8,9,14,19] comprise results on the p-spectrum in
higher dimensional cases. The proofs of the versions of the trace formula used there are
only sketched. The present paper is a generalization of [15]; it involves more information
on our basic tools, especially on geodesic double differential forms in connection with
Euler-Poisson-Darboux equations, but we omit the calculations given in [15].

One can apply Selberg’s trace formula and our methods used for its proof to
make spectral estimates (cf. [17]) and to solve lattice problems (cf. [16]).

Let G be a properly discontionuous group of isometries of n-dimensional hyper-
bolic space Hn of constant curvature −1 without fixed points (with the exception of
the identity map id ) with compact fundamental domain and let us consider the related
Killing-Hopf space form V = Hn/G. Let ρ be an orthogonal representation of G on
R

m. We consider R
m-valued differential p-forms on the space from V . The isometries

b ∈ G induce mappings b∗ for the p-differential forms on Hn (cf.[15]). The R
m-valued
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differential form α =







α1

...
αm






with the differential forms α1, . . . , αm as components is

called G-automorphic or twisted, if we have







b∗α1

...
b∗αm






= ρ(g)







α1

...
αm







for all b ∈ G. As pointed out in [5], Hodge theory is used. Let us denote by Sp the set
of eigenvalues of the Laplace operator ∆ = dδ + δd for R

m-valued differential forms on
V . Let us denote by d and δ the differential and codifferential operator, respectively.
We denote by dp(µ) and δp(µ) the dimension of the eigenspaces of closed (dα = 0)
eigenforms and that of coclosed twisted p-eigenforms (δα = 0) for an eigenvalue µ ∈ Sp,
respectively. The dimension of harmonic twisted p-forms is denoted by Bp. By the
telescopage theorem of Mc Kean and Singer we have dδ

p(µ) = dd
p+1(µ) for µ ∈ Sp\{0}

and p = 0, 1, . . . , n − 1. Using the Hodge star operator one also gets dδ
p(µ) = dd

n−p(µ).
Let Ω be the set of nontrivial free homotopy classes of V . In every class ω ∈ Ω
there lies exactly one closed geodesic line. We denote by l(ω) and ν(ω) its length
and multiplicity, respectively. The parallel displacement along the closed geodesic line
induces an isometry of the tangent space at every point of the geodesic line with the
eigenvalues β1(ω), . . . , βn−1(ω), 1 with |βi(ω)| = 1 (i = 1, . . . , n− 1). Let ep(ω) be p-th
elementary symmetric function of βi(ω) (i = 1, . . . , n − 1) and put e0(ω) = 1. Further
on we introduce the weight

σ(ω) :=
1

ν(ω)
eNl(ω)

n−1
∏

j=1

1

el(ω) − βj(ω)
with N =

n − 1

2
.

There is an one-to-one relation between the set of free homotopy classes and the classes
of conjugate elements of G. So we can define the trace tr ρ(ω) to be the trace tr ρ(b)
for elements of the related class of conjugate elements.

We will prove the

Theorem (Selberg’s trace formula): Let h(r) be an analytic function in the
strip |Im r| < N + δ with N = n−1

2 , 0 < δ < 1
2 , which is even, h(r) = h(−r), and

satisfies

|h(r)| ≤ A(1 + |r|)−n−δ.

From the Fourier transform

g(u) =
1

2π

∫ ∞

−∞
h(r)e−irudr
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of h(r) we can state the trace formula
∑

µ∈SP

d∗p(µ)h(rp(µ)) = vol V 〈Sn
p , g〉 +

∑

ω∈Ω

l(ω)σ(ω) ep(ω) tr ρ(ω) g(l(ω))

for p = 0, . . . , n − 1 with rp(µ) =
√

µ − (p − N)2,

〈Sn
p , g〉 =

2
(n−1

p

)

(4π)−
n
2

Γ(n
2 )







































∫ ∞

0
(

N
∏

u=0,u 6=|p−N |

(r2 + u2))h(r) dr for n odd

∫ ∞

0
(

N
∏

u= 1
2
,u 6=|p−N |

(r2 + u2)) r h(r) tanh(πr) dr for n even

d∗p(0) = (−1)p(B0 − B1 + . . . + (−1)pBp) + K0, N = n−1
2 ,

K0 =











0 for n odd and for (p ≤ n−2
2 , n even)

(−1)p+1−n
2 π

−(n+1)
2 Γ(n+1

2 )m vol V for (p ≥ n
2 , n even),

d∗p(µ) = dδ
p(µ) for µ > 0. vol V thereby denotes the volume of the space form V .

2. Geodesic double differential forms and Euler-Poisson-Darboux equa-

tions. Using the geodesic distance r(x, y) of the points x, y ∈ Hn P. Günther [10]
introduced the double differential forms

σ0(x, y) = 1, τ0(x, y) = 0,

σ1(x, y) = sinh r(x, y)dd̂r(x, y), τ1(x, y) = dr(x, y)d̂r(x, y),

σp = 1
p
σp−1

^ ^̂
σ1 τp = σp−1

^ ^̂
τ1

d and d̂ thereby denote the differentials with respect to x and y, respectively. For double
differential p-form φp(x, y) and a function h(r) of the geodesic distance r = r(x, y) we
have (C2-differentiability is supposed)

△(h(r)φp(x, y)) = −(h′′(r) + (n − 1) coth rh′(r))φp(x, y)

−2h′(r)(qi∇i)φp(x, y) + h(r)△φp(x, y).

The Laplace operator is used with respect to x and by (qi∇i) the derivation
in the direction of the geodesic line connecting x and y (using Einstein summation
convention), cf. [10, 12] is denoted. The following equation holds:

(qi∇i)σp(x, y) = 0, (qi∇i)τp(x, y) = 0.
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It is useful to introduce

αp = σp + cosh rτp and βp = cosh rσp + τp.

Next we have

△αp = −p(n − p + 1)αp, dαp = 0,

△βp = −(p + 1)(n − p)βp, δβp = 0.

In terms of σp and τp we have (cf. [10])

△σp =
(

−p(n − p − 1) + 2p
1

sinh2 r

)

σp − 2(n − p)
cosh r

sinh2 r
τp,

△τp =
(

−(p − 1)(n − p) + 2(n − p)
1

sinh2 r

)

τp − 2p
cosh r

sinh2 r
σp.

For λ > n + 5 we define for r(x, y) < t

A(t, λ, x, y, n, p) := c∗(λ, n, p)
(

(λ − n − 3){2(cosh t − cosh r)}
λ−n−5

2 sinh2 rσp

−(n − p){2(cosh t − cosh r)}
λ−n−3

2 (cosh rσp + τp)
)

(x, y),

B(t, λ, x, y, n, p) := c∗(λ, n, p)
(

(λ − n − 3){2(cosh t − cosh r)}
λ−n−5

2 sinh2 rτp

−p{2(cosh t − cosh r)}
λ−n−3

2 (cosh rτp + σp)
)

(x, y)

with c∗(λ, n, p) = (−1)p
Γ(λ−1

2 )

Γ(λ−n−1
2 )

π−n
2 and A(t, λ, x, y, n, p) = 0, B(t, λ, x, y, n, p) = 0

for r(x, y) ≥ t.

We also define

Mα(t, λ, x, y, n, p) := c∗(λ, n, p)
(

{2(cosh t − cosh r)}
λ−n−3

2 αp

)

(x, y),

Mβ(t, λ, x, y, n, p) := c∗(λ, n, p)
(

{2(cosh t − cosh r)}
λ−n−3

2 βp

)

(x, y)

for r(x, y) < t and Mα(t, λ, x, y, n, p) = 0, Mβ(t, λ, x, y, n, p) = 0 for r(x, y) ≥ t. We
immediately obtain

A(t, λ, x, y, n, p) = (λ − 3) cosh tMβ(t, λ − 2, x, y, n, p)

−(λ − 3)Mα(t, λ − 2, x, y, n, p) − (λ−3
2 − p + n

2 )Mβ(t, λ − 2, x, y, n, p),

B(t, λ, x, y, n, p) = (λ − 3) cosh tMα(t, λ − 2, x, y, n, p)

−(λ − 3)Mβ(t, λ − 2, x, y, n, p) − (λ−3
2 + p − n

2 )Mα(t, λ − 2, x, y, n, p).

Using the above formulas, we get by direct calculation
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Proposition 1. For λ > n + 9 the equalities holds

( d2

dt2
+ λ

d

dt
+ △ + ((p + 1)(n − p) +

λ2 − (n + 1)2

4
)
)(

sinh1−λ tA(t, λ, x, y, n, p)
)

= 0,

( d2

dt2
+ λ

d

dt
+ △ + (p(n + 1 − p) +

λ2 − (n + 1)2

4
)
)(

sinh1−λ tB(t, λ, x, y, n, p)
)

= 0.

This motivates us to consider the following Euler-Poisson-Darboux equation.
Let us denote by z(t, λ, µ, n) the uniquely determined solution of the differential equa-
tion

( d2

dt2
+ λ coth t

d

dt
+ (µ +

λ2 − (n − 1)2

4
)
)

(z(t, λ, µ, n)) = 0

with the initial conditions

z(0, λ, µ, n) = 1,
d

dt
z(t, λ, µ, n)|t=0 = 0.

We can express z(t, λ, µ, n) in terms of Gauß hypergeometric function F (., ., ., .):

z(t, λ, µ, n) =
(cosh t + 1

2

)
1−λ

2 F (
1

2
− χ(µ),

1

2
+ χ(µ),

λ + 1

2
,
1 − cosh t

2
)

with

χ(µ) =

{
√

N2 − µ for µ ≤ N2

i
√

µ − N2 for µ > N2
and N =

n − 1

2
.

According to [11, 15] we have

z(t, λ, µ, n) = (
1

λ + 1
sinh t

d

dt
+ cosh t) z(t, λ + 2, µ, n)

and

z(t, λ2, µ, n) =
2 sinh1−λ2 t

B
(

λ1+1
2 , λ2−λ1

2

)

∫ t

0
{2(cosh t − cosh s)}

λ2−λ1−2

2 sinhλ1 s z(s, λ1, µ, n)ds

for λ2 ≥ λ1 + 2. We use the Euler-Poisson-Darboux parameter λ to get better conver-
gence properties of eigenform expansions of certain twisted double differential forms.
For this purpose we need the estimation

|z(t, λ, µ, n)| ≤ c sinh−λ
2 t(µ − N2)−

λ
4(1)

for µ > µ∗ > N2, N = n+1
2 , t > 0.
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Next we introduce

x(t, λ, µ, n, p) := z(t, λ, µ + (p + 1)(n − p) − n, n),

y(t, λ, µ, n, p) := z(t, λ, µ + p(n + 1 − p) − n, n),

u(t, λ, µ, n, p) := −
1

λ + 1
(
λ + 1

2
− p +

n

2
) sinh2 t y(t, λ + 2, µ, n, p) + cosh ty(t, λ, µ, n, p),

v(t, λ, µ, n, p) := −
1

λ + 1
(
λ + 1

2
+ p −

n

2
) sinh2 tx(t, λ + 2, µ, n, p) + cosh t x(t, λ, µ, n, p).

It follows

x(t, λ, µ, n, p) = (
1

λ + 1
sinh t

d

dt
+ cosh t) x(t, λ + 2, µ, n, p),

y(t, λ, µ, n, p) = (
1

λ + 1
sinh t

d

dt
+ cosh t) y(t, λ + 2, µ, n, p),

u(t, λ, µ, n, p) = (
1

λ + 1
sinh t

d

dt
+ cosh t) u(t, λ + 2, µ, n, p),

v(t, λ, µ, n, p) = (
1

λ + 1
sinh t

d

dt
+ cosh t) v(t, λ + 2, µ, n, p).

3. Twisted double differential forms and eigenform expansions. We
define the R

m2
— valued double differential forms

A(t, λ, x, y, n, p) =
∑

b∈G

ρ(b)b∗A(t, λ, x, by, n, p),

B(t, λ, x, y, n, p) =
∑

b∈G

ρ(b)b∗B(t, λ, x, by, n, p),

Mα(t, λ, x, y, n, p) =
∑

b∈G

ρ(b)b∗Mα(t, λ, x, by, n, p),

Mβ(t, λ, x, y, n, p) =
∑

b∈G

ρ(b)b∗Mβ(t, λ, x, by, n, p).

If we use b∗ in connection with a double differential form it shall be taken with respect
to the variable y. The fact that group G is properly discontinuous implies that these
sums are finite. We identify twisted differential forms on Hn with differential forms
on the space form V , and we do the same for the double differential forms. Using the
spherical mean value operators defined by the kernels A(t, λ, x, y, n, p), B(t, λ, x, y, n, p),
Mα(t, λ, x, y, n, p) and Mβ(t, λ, x, y, n, p) we can proceed as in [15] to get the eigenform
expansions of the related twisted kernels. We want to point out that the essential
information for that procedure is given by Proposition 1 on the one hand and by the
knowledge of initial values on the other hand. For the initial values cf. [10, 15].
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For the definition of the pointwise norm of a differential form and of a double
differential form we refer to [6, 12, 15], we also need the norms obtained by integration
of the pointwise norms over a fundamental domain of G. We get norms of the R

m-
valued differential forms and of the R

m2
-valued double differential forms if we take the

maximum of the norms of the components. In the space of quadratic integrable R
m-

valued p-forms ϕ over V there exists a complete orthonormal system Ep of R
m-valued

p-eigenforms of the Laplace operator △ = dδ + δd, which we can suppose to be closed
(dϕ = 0) or coclosed (δϕ = 0). We decompose Ep into a set of harmonic eigenforms
Eh

p , closed but not coclosed eigenforms Ed
p and coclosed but not closed eigenforms Eδ

p.
We get

Proposition 2. Let us denote by µ(ϕ) the eigenvalue of ϕ ∈ Ep: △ϕ = µ(ϕ)ϕ.
Then we have the following eigenform expansions:

A(t, λ, x, y, n, p) = −
∑

ϕ∈Eδ
p

µ(ϕ)

λ − 1
x(t, λ, µ(ϕ), n, p) sinhλ−1 tϕ(x)ϕ(y),

B(t, λ, x, y, n, p) = −
∑

ϕ∈Ed
p

µ(ϕ)

λ − 1
y(t, λ, µ(ϕ), n, p) sinhλ−1 tϕ(x)ϕ(y),

Mα(t, λ, x, y, n, p) =
∑

ϕ∈Eδ
p∪Eh

p

x(t, λ − 2, µ(ϕ), n, p) sinhλ−3 tϕ(x)ϕ(y)

+
∑

ϕ∈Ed
p

u(t, λ − 2, µ(ϕ), n, p) sinhλ−3 tϕ(x)ϕ(y),

Mβ(t, λ, x, y, n, p) =
∑

ϕ∈Ed
p∪Eh

p

y(t, λ − 2, µ(ϕ), n, p) sinhλ−3 tϕ(x)ϕ(y)

+
∑

ϕ∈Eδ
p

v(t, λ − 2, µ(ϕ), n, p) sinhλ−3 tϕ(x)ϕ(y).

The right hand sides are convergent with respect to x in L2-sense uniformly with respect

to y. For λ > 2n + 2 the series are pointwise convergent with respect to x and y.

The improved convergence properties for λ > 2n + 2 are a consequence of the
well-known asymptotic behaviour of the eigenforms (see [6,15])

∑

ϕ∈Ed
p∪Eδ

p,µ(ϕ)<T

‖ϕ(x)‖2 = O(T
n
2 )

and estimation (1).
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4. The Selberg’s trace formula. The trace of the double p-form

ϕ(x, y) = ϕi1...ipj1...jp(x, y)dxi1
^

. . .
^

dxipdyj1
^̂

. . . dyjp

written in local coordinates in a Riemannian space is given by

tr ϕ(x, x) = p!gi1j1(x) . . . gipjp(x)ϕi1...ipj1...jp(x, x)

using the contravariant metric tensor gij and the Einstein summation convention. If
we use a R

m2
-valued double differential form we first take the trace of the components

using the formulas above and then take the trace of the (m × m)-matrix.

We will use the Poincaré coordinate system of the upper half space for Hn :

Hn = {x = (x1, . . . , xn) : xn > 0}, the metric tensor is given by g
( ∂

∂xi
,

∂

∂xj

)

=
δij

(xn)2

with the Kronecker symbol δij .

In order to calculate traces we need some well-known facts about the structure
of G. There is a one-to-one relation between the conjugacy classes of elements of G
and the free homotopy classes of the space form V = Hn/G. In this way, we can use
the length l(·), multiplicity ν(·) and the weights σ(·), ep(·) in terms of free homotopy
classes or in terms of the elements b ∈ G, b 6= id . Let {br}r∈R be a set of representatives
of the conjugacy classes of primitive elements with an at most countable index set R.
If Gr denotes the cyclic group generated by br, r ∈ R, we consider the right coset
decomposition of G by Gr : Gr =

⋃

k∈K Grcrk. Thereby K is at most countable. {bj
r}

with r ∈ R, j ∈ Z\{0} is a set of representatives of the conjugacy classes of G without the
identity class. Using the decomposition G = id ∪ {c−1

rk bj
rcrk : r ∈ R, k ∈ K, j ∈ Z\{0}}

it is not difficult to check that Fr =
⋃

k∈K

crkF is a fundamental domain of the group Gr

if F is a fundamental domain of G. From [15] we have

tr (c−1bc)∗αp(x, c−1bc) = tr b∗αp(cx, bcx).

We consider

Mα
#(t, λ, x, y, n, p) =

∑

b∈G,b6=id

ρ(b) b∗Mα(t, λ, x, by, n, p).

Using the structure of G, we get

tr Mα
#(t, λ, x, x, n, p)

=
∑

j∈Z\{0},r∈R

ρ(bj
r)

∫

Fr

{2(cosh t − cosh r(x, bj
rx))}

λ−n−3
2 tr (bj

r)
∗αp(x, bj

rx)dx.
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We recall that the geodesic distance r(x, y) is given in the used Poincaré coordinate
system by

cosh r(x, y) = 1 +
(x1 − y1)2 + . . . + (xn − yn)2

2xnyn

for x = (x1, . . . , xn), y = (y1, . . . , yn). For every b ∈ G there exists such a Poincaré
coordinate system that we get

yi = el(b)
n−1
∑

k=1

αi
kx

k (i = 1, . . . , n − 1), yn = el(b)xn

for x = (x1, . . . , xn), bx = (y1, . . . , yn) with an orthogonal matrix αi
k. Now one is able

to perform all calculations explicitly. Following [15] without any changes, we get

tr Mα
#(t, λ, x, x, n, p)

=
∑

j∈Z\{0},r∈R,l(bj
r)<t

ρ(bj
r)σ(bj

r) l(bj
r)
(

{2(cosh t − cosh l(bj
r)}

λ−2
2

2p − n − λ + 1

2(λ − 2)
ep−1(b

j
r)

+{2(cosh t − cosh l(bj
r)}

λ−4
2 (ep−1(b

j
r) cosh t + ep(b

j
r))
)

.

We express the right hand side in terms of the free homotopy classes:

tr Mα
#(t, λ, x, x, n, p)

=
∑

ω∈Ω,l(ω)<t

ρ(ω)σ(ω)l(ω)
(

{2(cosh t − cosh l(ω)}
λ−2

2
2p − n − λ + 1

2(λ − 2)
ep−1(ω)

+{2(cosh t − cosh l(ω)}
λ−4

2 (ep−1(ω) cosh t + ep(ω)
)

.

We integrate over F :

∫

F
tr Mα

#(t, λ, x, x, n, p)

=
∑

ϕ∈Eδ
p∪Eh

p

x(t, λ − 2, µ(ϕ), n, p) sinhλ−3 t +
∑

ϕ∈Ed
p

u(t, λ − 2, µ(ϕ), n, p) sinhλ−3 t.

If we use the last two equations and include the term corresponding to id ∈ G with
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tr ρ(id ) = m, we get

Γ(λ−1
2 )

Γ(λ−n−1
2 )

π−n
2

(

n

p

)

m vol V {2(cosh t − 1)}
λ−n−3

2 +
Γ(λ−1

2 )

Γ(λ−2
2 )

2
1−n

2 π− 1
2

(

∑

ω∈Ω,l(ω)<t

tr ρ(ω)σ(ω)l(ω)
(

{2(cosh t − cosh l(ω)}
λ−2

2
2p − n − λ + 1

2(λ − 2)
ep−1(ω)

+{2(cosh t − cosh l(ω)}
λ−4

2 (ep−1(ω) cosh t + ep(ω))
)

)

=
∑

ϕ∈Eδ
p∪Eh

p

x(t, λ − 2, µ(ϕ), n, p) sinhλ−3 t +
∑

ϕ∈Ed
p

u(t, λ − 2, µ(ω), n, p) sinhλ−3 t.

If we compare this equation with that of the theorem we want to prove we shall see that
the results for the Euler-Poisson-Darboux parameters λ − 2 and λ and for the degrees
p − 1 and p are mixed in the last equation given above. By induction with respect to
p we can separate the “mixed results” into the desired “pure results”. This procedure
is given in details in [15]. We get

∑

µ∈Sp

d∗p(µ) x(t, λ, µ, n, p) sinhλ−1 t

=
π−n

2

Γ(n
2 )

(

n − 1

p

)

m vol V

N−|N−p|
∑

u=0

2−2u Γ(n
2 − u)Γ(λ+1

2 )

Γ(λ−n+1
2 + u)

.
u
∏

v=1

((N + 1 − v)2 − (N − p)2){2(cosh t − 1)}
λ−n−1

2
+u

+
Γ(λ+1

2
)

Γ(λ
2
)

2
1−n

2 π− 1
2

∑

ω∈Ω,l(ω)<t

ρ(ω)σ(ω)l(ω){2(cosh t − cosh l(ω)}
λ−2

2 ep(ω).

Now we can proceed as in [15] to complete the proof. So, we use the last equation for
λ = 2n + 2 and apply the differential operator

d

dt

( 1

sinh t

d

dt

)n
,

which gives an equation in the function space D′(R). We first use an even test function
g ∈ D(R) and then we apply a standard approximation argument.



34 Reinhard Schuster

REF ERENC ES
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nienne, Lecture Notes in Mathematics, vol. 194, Berlin, 1971.

[3] J.B.Diaz and H.F.Weinberger, A solution of the singular initial value prob-
lem for the Euler-Poisson-Darboux equation, Proc. Amer. Math. Soc. 4 (1953),
703-715.

[4] J.Elstrodt, Die Selbergsche Spurformel für kompakte Riemannsche Flächen,
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