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THE W LANGUAGE AND ITS APPLICATIONS
TO THEOREM PROVING

MAGDALINA TODOROVA

ABSTRACT. The paper presents a brief description of the W language. The way
of using it to prove theorems is illustrated too. Moreover it has been shown that
this language can enable us not only to prove the validity of a certain theorem but
also to find out the preconditions for which it holds.

W: Equational Programming Language of Logic Style. The W language
implements an approach of integrating functional and logic programming styles [3]. It
is an equational programming language which accomplishes generalization through:

- replacing functional terms by words of a context-free language;

— replacing rewriting by narrowing.

Generally speaking a program written in the W language is a system of equa-
tions since in the equational style each function is defined by one or more equations.
Usually equational interpreters function as functional term transformers while programs
written in the W language can describe string transformations (in particular functional
term ones). The structure of these strings is described through a context-free gram-
mar. The known equational interpreters are used to evaluate only terms which have no
variables. The W language allows both functional and logic evaluation of words of a
context-free language. Therefore the W language is called an equational programming
language in a logic style.

The generalizations made in the equational programming style enable us to use
the W language for evaluating words whose free variables are functions which is not
the case with pure logic languages.

The programs written in the W language involve syntax rules and equations.
All variables used in the equations are defined in the variable declaration part. The
Samplel program [4] is an example of a program written in the W language.
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Transformer Samplel:<expr>;

type
<expr>::= <nat> | <bool>;
<nat>::= <func_name>’(’<obj>’)’ | <nat>’+’<nat>| ’0’| ’1’;
<bool>::= ’eq(’<nat>’,’<nat>’)’ | ’true’ | ’false’;
<obj>::= ’[’<obj>’,’<obj>’]’ | ’nil’;
<func_name>::= ’len’ | ’depth’;

var
<x>, <y>, <2> : <obj>;
<m>, <n> : <nat>;
<fn> : <func_name>;

begin

T1 ’len(nil)’ ==> ’0°’;

4 o - ’len([’<x>’,’<y>’])’ ==) ’10n(’<y>’)01’;

T3 ’depth(nil)’ ==> ’0’;

T4 *depth([’<x>’,’<y>*])’ ==> ’depth(’<x>’)+1’;

TS ’eq(0, 0)’ ==> ’true’;

T6 ’eq(’<m>’+1,0)’ ==> ’false’;

T7 ’eq(0,’<n>’+1)’ ==> ’false’;

-ra ’Gq(’<m>’*1,’<n>’*1)’ ==) )‘q(,<->,.a<n>r))
end.

The type declaration part consists of syntax rules and it assigns a context-free
grammar. The latter defines words which can be evaluated through Samplel. The
axiom <expr> of this grammar is given in the program heading immediately after its
name Samplel. The sequences of terminal symbols are put in quotes. Variables are
described in the variable declaration part of the program. Finally the program involves
equations (rewriting rules). Some variables are given in the equations. Each equation
is numbered so as to avoid ambiguity.

Each word of <expr> type can be evaluated logically by the Samplel program.
The logic evaluation is reduced to a functional one with words having no variables. The
leftmost and outermost replacement strategy is used for evaluating words [4].

Examples.
(i) If the Samplel program is run for the input word
*depth([ [ nil, [nil, nil ]], nil ])°’
then the latter is reduced to the word 0+1+1, i.e. to 2 (see Fig.1).
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*depth( [ [nil, [nil, nil ] ], nil ])°’
| T4
’depth( [ nil, [ nil, nil ] J) + 1°
| T4
’depth( nil ) +1 +1°
| T3
70+1+1°

Fig 1.
Arrows are followed by the numbers of the equations applied to the current
word. The evaluation is functional since the evaluated word has no variables.

(ii) If the Samplel program is run for eq (len(’<z>’),0+1+1)’, then this
word is reduced to the following list:

( false if 2z = nil,
false if z = [ x, nil ],
true if z=[x, [ x1,nil1 ] ],
false if z=[x, [x1, [x2,y]1]] )

where z, x1 and x2 are variables of <obj> type. This reduction is illustrated in Fig.2
and there the evaluation is logic.

From the examples given above it follows that the output of a program written
in the W language can be one or a number of ground or nonground words. Also this
output can include some substitutes of the variables of the input word. A detailed
description of the W language is given in [5] and [7].

The programs written in the W language are called also generalized transform-
ers. They are described and proved in [6, 7].

Moreover not every generalized transformer can ensure an appropriate program
environment. For example, there exist some generalized transformers with which some
of the words of the context-free language generated by the transformer grammar have
several different normal forms. It is very difficult to ground the choice of the evaluation
strategy with such transformers. For that reason we shall consider only confluent
generalized transformers [6, 7).
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’eq(len(’<z>’),0+1+1)’

’eq(len(nil),0+1+1)’,z=nil

|m ’eq(len([’<x>’,’<y1>’]),0+1+1)’ ,2=[x,y1]
req(0, 0+1+1)’, z=nil t 12
¢ 7 ’eq(len(’<y1>’)+1,0+1+1)’, z=[x,y1]
‘false’, z=nil l T8
yi=nil ’eq(len(’<y1>’),0+1)’, 2z=[x,y1]
'Nl(l.n(nil).Oﬂ)'.z=[x.nhl/ yi=[x1,y2]

i1

'eq(0,0+1)’, z=[x, nil] *eq(len([’<x1>’,’<y2>']),0+1)’,2z=[x, [x1,y2]]

47 ¢ T2
'false’, z=[x, nil] ’eq(len(’<y2>’)+1,0+1)’,z=[x, [x1,y2]]
t T8

y2=nil _.eq(len(’<y2>’),0)’,2z=[x, [x1,y2]]

’eq(len(nil),0)’, z=[x,[x1,nil ]]
b y2=[x2,y]

’eq(0,0)’,2z=[x, [x1,nil ]]
175 ’eq(len[’<x2>’,’<y>’]),0)’, 2z=[x, [x1,[x2,y]]]
U
’eq(len(’<y>’)+1,0),z=[x, [x1, [x2,y]]]
{16
false’, z=[x, [x1,[x2,y]l]]

‘true’, z=[x,[x1,nill]

Fig. 2.

Some words generated by a confluent generalized transformer may have a nor-
mal form which cannot be found by applying the leftmost and outermost replacement
strategy. The process of evaluating such words becomes infinite in practice. For that
reason we assume that the confluent generalized transformers are outer [6, 7). That
property enables us to find out the normal form of words of that type.

It has been proved [1, 2] that narrowing is complete with confluent equational
theories having the property of termination. If a confluent generalized transformer is
characterized by an outer property, then it possesses the property of termination as well,
which is proved in [6, 7]. In order to verify whether a certain generalized transformer
is confluent and outer, some criteria have been found out in [7). If we check Samplel
for these criteria, we shall see that these properties are typical of it. Next we are going
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to consider some generalized transformers which are assumed to be both confluent and
outer.

Theorem Proving through the W Language. The W language is an
equational programming language. Therefore it can be used for proving theorems of
A = B type where A and B are words of a context-free language. In this case we create
a confluent and outer generalized transformer so that all the known facts are described
through equations in the equation declaration part and the grammar determining the
language whose words would be evaluated by the program is described in the program
heading and in the type declaration part. Next the program is run consecutively for
the words A and B and the data thus obtained are compared.

Example 1. Let us prove that the length of the list [x1, [x2,nil]] is equal
to the depth of the list [[nil,x1 ],x2] (where x1 and x2 are arbitrarily chosen lists).

We shall use the Samplel program to prove this statement. Running this pro-
gram for the words ’len([’<x1>’,[’<x2>’,nil]])’ and ’depth([[nil, <x1>’],
’<x2>’])’ we obtain the string 0+1+1’ and thus the proof is completed. That is why
the declaration <x1>, <x2>:<obj> must be included in the variable declaration part of
the generalized transformer Samplel.

The theorem can be rewritten in the form of a word of a context-free language
generated by a grammar defined in a W program. In such a case its proof will be
related to the evaluation of the word expressing the above statement.

Example 2. Let us prove that the length of the list [[x1,x2], [x3,nil]] is
equal to 2 (where arbitrarily chosen lists are denoted by the variables x1, x2 and x3).

To prove that it is sufficient to evaluate the word *eq(len([[’<x1>’,7<x2>’],
[’<x3>’,nil ]]),0+1+1)’ through the Samplel program. The word ’true’ is ob-
tained. (Thus the following declaration: <x1>, <x2>, <x3>:<obj> must be included in
the variable declaration part of Samplel).

Moreover, one can also find out the preconditions for which a certain statement
holds.

Example 3. When is the depth of list z equal to 27
Let us evaluate the word: ’eq(depth(’<z>’),0+41+1)’ by means of Samplel.
The evaluation results in the following list:

( false if z=nil,
false if z=[ nil, y ],
true it  z=[ [nil, y11,y1],
false if z=[ [ [y3,y2),y11] .y )

where y1, y2 and y3 are variables of <obj> type and they are generated by the language
interpreter. From the evaluation it follows that this statement will be true if z is equal
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to [[nil, y1], y] where y and y1 are arbitrary lists. The evaluation includes also
the cases for which that statement is false.

Example 4. Is there a function defined in the Samplel program for which the
list [nil, [nil,nil ]] is equal to 2?

To prove that let us run the Samplel program in order to evaluate the word
’eq(’<fn>’([nil, [nil,nil ]]),0+1+1)’ where a certain function name is denoted
by the variable <fn>. The following list is obtained:

( true if fn = len,
false if fn = depth )

which shows that the len function has the property mentioned.

This example is a good illustration of how the W language may be used for
evaluating words whose free variables may be functions. The generalized transformer
Sample2 described below enables us to add, multiply and compare equal natural num-
bers.

Let us denote by s(x) (where x is a variable of the <nat> type) a natural
number following x. Thus let s(0) be 1, s(s(0)) be 2, etc. It is easy to extend the
Sample2 program so as to apply it to integer numbers.

Transformer Sample2: <T>;

type
<T>::= <nat> | <bool>;
<nat>::= <func_name>’(’<nat>’,’<nat>’)’ |

),(’(n‘t>l)) l )o);

<bool>::= ’eq(’<nat>’,’<nat>’)’ | ’true’ | ’false’;
<func_name>::= ’+’ | ’x’;

var
<x>, <y> : <nat>;,
<f>, <g> : <func_name>;

begin
’+(0,7¢<x>?)’ ==> <x>;
P+(s(7<x>’),7<y>?)? ==> 2g(+(’<x>’,7<y>?))?;
"(0.’(!)’)’ ==) )0);
P#(8(0<x>?),7<y>?)? ==> P4 (x(P<x>’,7<y>?),<y>?) ?;
’eq(0,0)’ ==> ’true’;
’eq(s(’<x>’),0)’ ==> ’false’;
’eq(0,s8(’<x>’))’ ==> ’false’;
eq(s(’<x>’),s(’<y>’))’ ==> ’eq(’<x>’,’<y>’)’

end.
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The generalized transformer Sample2 is confluent and outer. Now let us use it
to prove some simple statements.

Example 5. Let us prove that the root of equation x+1=2 is equal to 1
(where x is a variable of the <nat> type). To prove that let us evaluate the word
’eq(+(’<x>’,8(0)),s(s(0)))’ by the Sample2 program. The evaluation results in
the following list:

( false if x=0,
true if x=s8(0),
false if x=s(s(0)),
false it x=8(s(s(x3))) ),

where x3 is an arbitrary variable of the <nat> type (the type of the variable x) and it
is generated by the language interpreter.

Example 6. Let us prove that there exists no natural number which can be a
root of equation x+3=1.

Let us run the Sample2 program so as to evaluate the word ’eq(+(’<x>’,
s(s(s(0)))), 8(0))’. The above statement is proved directly by the following eva-
luation output obtained:

( false if x=0,
false if x=s5(0),
false it x=s(s(x2)) %

where x2 is a variable of the <nat> type and it is generated by the W language inter-
preter.

Example 7. Let us prove that the unique values of parameter a for which
equation x+a=1 has natural roots are 0 and 1.

Let us use Sample2 again in order to evaluate the word ’eq(+(’<x>’,’<a>?),
8(0))’. The declaration <a>:<nat> must be included in the variable declaration part
of Sample2. The following list is obtained:

( false if x =0, a=0,
true it x =0, a =8(0),
false if x =0, a = s(s(a2)),
true if x =38(0), a =0,
false if x = s(x1), a = s(a3),
false if x = s(s(x2)) )
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Thus, the statement is proved and the roots searched are found.

Example 8. Let us prove that (+,+) and (*,*) are the sequences of operations
+ or * such that if we substitute them for the symbol ? in the series (172)73 we are
going to obtain an arithmetic expression with a value equal to 6.

We can prove this statement by evaluating the word

*eq(’<g>’ (’<£>’(s(0),s(s(0))),s(=s(s(0)))), s(s(s(s(s(s(0)))))) )’

(where <£> and <g> are variables of <func_name> type) through Sample2.
The evaluation results in:

( true if f=+,g=+,
false if f =+, g=x,
false if f=x%,g=+,
true if f=x%x,g=x ) F

This example shows how we can use the W language to make a logical evaluation
of words having higher-order functions as their variables.

Finally let us point out that higher-order functions are one of the most appealing
features of functional programming languages. The uses demonstrated above have
shown that one of the advantages of the W language is that it has this feature.
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