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A THEOREM FOR THE IRREDUCIBLE MATRICES WITH A
SLIGHTLY DOMINANT PRINCIPAL DIAGONAL

E.CHAKUROV, R.CHAKUROVA

ABSTRACT. This paper considers irreducible matrices with a slightly dominant
principal diagonal. The theorem of O.Taussky giving a sufficient condition for
non-singularity of such matrices is generalized. A new sufficient condition for
convergence of Jackoby’s method for solving systems of linear equations for which
the matrix of coefficients has a slightly dominant principal diagonal is proved.

Theorem of O. Taussky [1]. Let matriz D of n-th order satisfy the following
conditions:
(i) D is irreducible;

(ii) D has a slightly dominant principal diagonal , i.e.
n

Hi=|dy| =Y |dij| >0, i=1,...,n;
ot

(iii) There is a strict inequality at least for one i in above inequalities, i.e. there
exists ig, 1 < ig < n, for which H; > 0.
Then the matriz D is non-singular.

Corollary. Let A = {ai;} be an irreducible matriz for which the following
conditions are satisfied:

a) Qi :O’ 1= 17...771,'
n
b) Z laij| <1,
j=1
i
n
c) There exists ig, for which Z lai,;| < 1.

=1
J#i0
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Then the matriz A has no eigenvalue X, with |A| = 1.

Assertion 1.  In the inequalities of the triangle |x — y| > ||x| — |y|| and
|z +y| < |z|+ |y| an equality is obtained iff Ty = |Ty|.

Lemma. Consider the matriz A = {a;;} with a slightly dominant principal
diagonal and a1 # 0. We denote

= |ai| — Z |aijl, i 3

J#l

- n| Z ‘(1”‘ n;

J¢1

where a}y = 0, (i = 2,...,n); a}j =ay, (j=1,...,n); and az-lj (1t=2,...,n, j=
2,...,n) are obtained after the first step of reducing the matriz A to the upper — trian-
gular form by Gauss method. Then

H —H > Qi1
i

2

H1>0 ’L—2

ail

Proof.
n
Hzl - - n‘ Z |a ‘a22| + Z ‘aij‘
Hﬁz J;i
. a1i041 - a1 a41
= |Gy — _Z aij_— |an|—|—Z\a”\
ai =
J#i J¢1
n
> fas| =[] = 3= (Jai + [ 2222 ) ~ o + Z g
ai =
J#i J#Z
a1;a41 ;1 i
ai ail ‘=
J#i
a1 Qi1
: (‘an‘ —Z|a13‘) : H1 > 0.
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Note. It follows from the proof above and from Assertion 1 that the equality
H} — H; = 0 is obtained for

Q015041 Q015041 . o
LA — L fori,j=2,...,n; i # j and
ari ari
QA1 0;41 313041 for i — 2 n
e - e g0y
arl a1

Consider a matrix A, which satisfies the following conditions :

(1) a; =0, i=2,...,n;
n

(2) dlagl=1,i=2,...,m
=

(3) Matrix A is irreducible.

Theorem 1.  If matriz A satisfies the conditions (1), (2), (3) and has an
etgenvalue A\ =1, then

(4) ;031015 = |Qjj041.015

(5) a;j1a1; = |aj1a1;] = laiiag;]

Proof. Let A =|A— E| =0. Let a step be carried out by the Gauss method
for reducing the matrix A — F to an upper triangular form, i.e. for kK = 1,...,n we
multiply the first row of A by aj; and add it to the k-th row. We obtain A = det{S;;},

for which :
Sii=—

Si1=0, Siy=an (1=2,...,n);
Sii = —1+(11i(1i1 (Z :2,...,’0);

Ski = ap; + agraq; (Z,]{ZZQ,,H, Z#k)

Consider matrix S = {S”} _o- According to the Lemma matrix S has a
slightly dominant principal diagonal, 1 e H; >0, fori=2,...,n. We are going to prove
that S is an irreducible matrix.
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Let us assume that S is a reducible matrix. This assumption presupposes the
existence of irreducible matrices S11, S22,..., Spp With dimensions Iy,ls, ... ,[, respec-
tively so that after some permutations of rows and columns, if necessary, we obtain
matrix S

S Sz ... Sin
S — 521 522 oo S2n
Sni Sna ... Sun

with determinant 0 = A = det S = det S11 x det Sap X ... x det Spy,.

We assume that det Sgp = 0, for any k, 1 < k < p. We denote Ny =11 + lo +
coo41lg_q for k> 1, Ny = 0. The matrix Sgj is irreducible. If it is singular in terms of
O Taussky’s theorem, the following conditions are satisfied:

N+l
laiil — > ajl=0fori=Ny+1,...,Ny+ 1.
F=Np+1
J#1
However, from the Lemma and conditions (1), (2) it follows that

Ni+lk Ni+lk

n
1 1 1
0= la;| — Z ‘aij‘z‘aii - Z |aij|21—2|aij\zo~
J=Np+1 j=Np+1 j=1
i#1 i i

Therefore a;; = 0 for i = Ni+1,... , Np+l, j=1,...,Nyand j = Ni+1,...,n
and matrix A is of the following form

A11 A12 Alk Alp
Ao 0 A0 0
Ap Apy oo App oo o Ay

i.e. A is reducible. The derived contradiction with (3) shows that matrix Sk is non-
singular and therefore, if matrix .S is reducible, then it is non-singular. This contradic-
tion proves that matrix S is irreducible. However, S has a slightly dominant principal
diagonal and therefore H} = H; = 0 for i = 2,...,n should be satisfied (from Taussky’s
Theorem). According to the Lemma

@ij015i1 @ija1jain - o
O L L R N b N T g
-1 -1
—lay;a: —lay;a;
and ——— = _
-1 -1
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Evidently conditions (4), (5) follow from this. Thus the theorem has been

proved.

We shall call a complex square matrix A e-matrix if A = eag, where the
real matrix o = («;;) has only nonnegative elements and ¢ = diag(1,e2,...,&y,) with
leil =1,7=2,...,n. It is evident that every e-matrix satisfies conditions (4), (5). So,

the following theorem is to a certain extent opposite to Theorem 1.

Theorem 2. If A is an e-matriz and A satisfies conditions (1), (2) and (3),
it has an eigenvalue A = 1.

Consider the determinant A = |A — F|. By multiplying the i-th column of
the determinant A by ¢; and adding it to the first one, we obtain A = det{S;;}, for
which, according to the e-matrix definition and condition (2), we obtain the following
equations:

n n n
Si1 = -1+ Z a1;€5 = -1+ Z Q15EGE5 = -1+ Z a1 = 0;
J=2 Jj=2 Jj=2
n n
Sil = a;1 + Z Q€5 — & = €;Q]1 + Z OéijEingj —&;
j=2 j=2
J#u J#u
n n
— 51‘(_1 + o1 + Zaij) = Ei(_l + Z aij) =0
j=2 j=1
J#i J#i

fori=2,...,n. Thus S;; =0 fori=1,...,n. Hence A = 0.

Corollary 1. If matriz A satisfies conditions (1), (2), (3) and has an
eigenvalue A by module equal to 1, then there exists 0, 6 € [0,27x], so that for every
Lihp=1,...,n,1%# j,i#p, pFj the following equations are satisfied:

(6) Q5. Qip.Apj = ei9.|dij.aip.apj\

(7) Qip-Api = 62i9.|aip.api|

Conversely, if matrix A satisfies conditions (1), (2), (3) and A = c.a.@.e?; then
it has an eigenvalue A = e’ by module equal to 1.

The simple corollary from Theorem 1 is a generalization of Taussky’s theorem.
A number of variants of such generalizations are known (e.g. see [2], [3], [4], [5], [6]).
Let us consider the case when all H; are equal to zero. In other words let us eliminate
condition (iii) from Taussky’s theorem.

Corollary 2. Let matriz B = {b;;} of n order satisfy the conditions:
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1. B is irreducible.
2. For eachi=1,...,n it is true that

n
H; = by — Y |bij| = 0.
i

3. At least one of the conditions

(8) bz‘jzpa bip _ | ij bip
pp pp
( ,5,p=1,...,n )
iF G iFEDJFED )
() bipbpi | bipbpi
biibpp biibpp

s not satisfied.
Then matrix B is non-singular.

Consider three diagonal matrices

1 a O 0 ... O 0 0

b1 1 aj 0 e 0 0 0

0 bg 1 a9 0 0 0
T =

0 0 0 0 . bn,1 1 Ap—1

0 0 0 O 0 by, 1

Such matrices are used for example in some numerical methods for differential
equations (see [7], 6.3.5). Matrix T" has a slightly dominant principal diagonal when
lap| < 1, |bn| <1 and |a;| + || < 1. (i =1,2,...,n — 1). The conditions of Corollary
2 in this case are

(a) for irreducibility a;.biy1 #0, (i =0,1,...,n—1);

(b) for 2.: |ag| = |by| =1, |a;| + |bj| =1, (i=1,...,n—1).

Conditions (8) are satisfied for every matrix 7" and the conditions (9) in this case
are equivalent to a;b;11 >0, (i =0,1,...,n —1). Therefore, if conditions (a) and (b)
are satisfied, matrix 7" is non singular, iff a;b; 11 < 0 at least for onei (i = 0,1,...,n—1).

Corollary 3. The method of Jacoby for solving the system of linear equations
Bz = f by the formula =¥ = Az*~1 4 g is convergent if matriz A = (diagB)™'B — F
satisfies the conditions (2) and (3) and does not satisfy conditions (6) and (7). For
matriz B these conditions are:
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bijbpibip o | bipsbip
bpp bpp
< ,5,p=1,...,n )
i#£g, i FEp, JFEDP )
bipbpi — 20 M
biibpp biibpp

Corollary 4. Consider the method of Gauss—Zeidel for solving the system of
linear equations Bx = f by the formula

(D + L)z* = —Uz*1 4 f,

where L, D and U are strict lower triangular, diagonal, and strict upper triangular
matrices respectively, so that B = D + L + U. It is known that a necessary and
sufficient condition for convergence of this method is that all roots A of the equation
det(U + A(D + L)) = 0 must be in the unit circle. It holds if matriz B satisfies both
the first and the second condition of Corollary 2 and there exist no 6 € [0, 7] for which
the following conditions are satisfied:

bijbp;bi i0 | bijbp;bi i — ) (j j
st = —e | LR ot (i — §)(j —p)(i —p) > 0
by ~ 'pp
bijbp;bi bijbp;bi L ,

pry P % at (i—j)(j—p)(i—p) <0

'pp Pp

bipbpi i | binbpi Lihp=1....,n

bilbpp bubpp Z?éja /L#p7 j #p

It is necessary to evaluate the checking algorithm for the practical elucidation
of the singularity of matrix B or the convergence of the methods of Jacoby and Gauss—
Zeidel. 1t is evident that apart from the n conditions H; =0 (i = 1,...,n), one has to
check the validity of other (n—1)+4(n—1).(n—2) = (n—1)? equations, i.e. to carry out
no more than (n — 1)? number of multiplications, but in general, considerably less than
(n—1)2. In comparison, for one step of the Jacoby method (n — 1)? multiplications are
necessary.
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