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ON SOME BOUNDS FOR POLYNOMIAL ROOTS OBTAINED
WHEN DETERMINING THE R-ORDER OF ITERATIVE
PROCESSES'

N.KJURKCHIEV, J. HERZBERGER

1. Introduction. Let an iterative method I in a Banach space B produce

sequences of iterates {z(*)} with klim 2®) = 2*. In many cases, one can show for the
— 00

corresponding sequences of errors e®) = ||z(*¥) — z*|| the recursion
(k+1) L (k—i) q'(p+1)
e <% H (e ¢ ) ,

i=0

where v, p, q are positive and independent of k. In order to calculate the R-order of
convergence of I Or(I,z*) (see Ortega and Rheinboldt [2]) one has to compute the

unique positive root al(ffq) of the polynomial

n

(1) Po(z) =2"—(p+1)>_¢"a"* p>0, ¢>0.
k=1

J.W.Schmidt [1] has shown that
is valid. The following estimates for a}(fq) are known in the literature (see [3]-[5]):

n
(2) n—_H(p+Q+1)<U;({Lq)<p+Q+1, n>gq/(p+1)

T This paper is supported partially under Contract MM-208/92 by Bulgarian Ministry of Education,
Science and Culture.
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m o PHDA+S+S) o
(3) oy > Y or0s n > 2, where

g - {n(n—l)/2, g=1
! g(n—1)q" —ng" +1)/(g - 1)%, ¢#1

g {n—l, qg=1
T @ -a)/g-1), g#1

(p+1)g"

(p+1)q"
1+1/n)" < ol < ptq+l——— >
S (14+1/n)" <opy <p+q ptat D

(4) p+Q+1—m

n>q/(p+1).

In general, the lower bound (4) is very accurate. It was proved by Traub [9] for the

case p > 0, ¢ = 1. The purpose of this note is to show some new estimates for 01%) .

2. Some estimation formulas. In order to prove our results, we make use of
some well-known estimations in the literature. The following theorems are used so as
to obtain these estimations.

Theorem A (E.Deutsch [6]). Let A = (ai;) be a nonnegative and irreducible
n X n-matriz and let the positive vectors x,y be defined by

Az = Dz, ATy = Dy,

where D = diag (dy,...,d,) > 0. If z is not an eigenvector of A, then it follows for the
spectral radius p(A) of A

(5) p(A) >

In [4] M.Petkovic and Lj.Petkovic derive the estimation (3) by means of (5).

Theorem B (E.Deutsch [6]). Under the same assumptions as in Theorem A
we get the inequalities

n

(6) p(A) >t -] - d;)Tivi/v'
i=1

TDx
>—yT
yla

for allt > p(A) + max (d; — a;).

1<i<n
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Theorem C (Westerfield [7]). Let z be the unique positive root of the equation

n
(7) "= g™ *, >0, 1<k<n
k=1

and let positive quantities qp, 1 < k < n after being arranged in order of decreasing
magnitudes, form a sequence

QN >q2> ... > Qp.

Then z satisfies the inequality
n
z < Z qr9r,
r=1

where
g1 ="Y1, Gr =Yr — Yr-1, 7”:2,3,...,7’1

and yy, is the positive root of the polynomial

k

yk:Zyk_r, k=1,...,n.
r=1

Theorem D (Bojanov [8]). Let
m
qk:Zajk, E=1,....,m; m>1, aj >0.
j=1
Let x; be the positive zeros of the polynomials
n
" = Za?kx”_k, j=1,...,m
k=1
then for the positive root z of the polynomial
n
" = Z qllzxnfk
k=1

the following estimation holds:

z2<x1+ "+ Ty
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Another application of Theorem D gives a lower bound:

n
2> GrGni1r

r=1

3. Further results. The estimations of Section 2 may help us to find out the
following bounds.

Theorem 1. Under the assumptions of Theorem C we get the bound

A1+
8 z > ,
®) 14+
where
n n
A]:quzv M]:Z(k_l)q]]zv j:]-u y 1
k=j k=j

Proof. Polynomial (7) if of the form
P(J}) =" — Z Ikl‘n_k (Ik = ql]:)
k=1

Let us associate the following matrix to P(x) [4]

L L Iy ... Iy1 I,
1 0 0 0
A= 0 1 o0 0 0
0 0 0 1 0

where det (zE — A) = P(x). The matrix A is non-negative and irreducible. Perron-
Frobenius theorem implies that A has a positive eigenvalue A equals to its spectral
radius p(A). It is obvious that p(A) = z. Moreover, let = be chosen so that x =
(1,...,1)T. Then from Az = Dz we get D = diag (\1,1,1,...,1).

Similarly, one can derive

y:g(LAQ,Ag,...,An)T’ a>0

y' Dz = a(\ + 1)
yTe=a(l+ m).

Now, from (5) we get (8). O
We can derive another lower bound as follows:
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Theorem 2. Under the assumption of Theorem 1 we get the lower bound

(9) z> 11 +2Xy — e /\2([1—1+2/\2)“1.

Proof. From Theorem B, the values of
n T
H(t) =t - [](t—d)=v/v'®
i=1

for
t > p(A)+ fg?él(di — a;i)

are strict lower bounds for p(A). However, since p(A) is not known, one should evaluate
H(t) for
t= ﬂ + max(dl — aii)
(A

where (3 is an upper bound of p(A4). Some of the possible values of  are: the largest
row sum of A, the largest column sum of A, maxd;.
7

In view of (6) and since

t:maxdi—l—max(dl —Il,dg—o,...,dn—()) =11 + 2
i

it follows that

n
2>t — [t —dyyvilv'e >
=1

1
I+ 2% — (Na(ly — 1+ 2xg) e HAatHdn ) T

which completes the proof of the theorem. O

Remark. From the bounds thus obtained we get a new bound for al(ffq) (see

3 oy > t= Y+ Da+a+ -+ (E -1

t=@+1)1+20q+¢+ - +q"h)
n—1

v=p+1) ) kd".
k=1

A numerical example follows. For zero al(o?q) ~ 5.1 of the polynomial

28 = 52° + 0.52% + 0.052° + 0.00522 + 0.00052 + 0.00005
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(n=6, p=4, ¢=0.1)

we get the bounds

from (2): 01(2 > 4.371,
from (3): o) > 3.817,
from (3): az(fq) > 4.815.
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