


SERDICA — Bulgaricae
mathematicae publicationes
19 (1993) 66-70

ABOUT AN ALGORITHM FOR DOWNLOADING DATA INTO A

HYPERCUBE MULTIPROCESSOR WITH A HOST PROCESSOR

DINKO GICHEV

Abstract. The problem of minimizing the time for downloading the data into
a hypercube multiprocessor with a host processor is discussed. A new download-
ing algorithm which improves the Data Scattering Algorithm is proposed. The
obtained result is better than that in [3].

1. Introduction. In this paper we shall consider the problem for downloading
data into the processing elements of a distributed memory multiprocessor. This problem
has already been discussed by many authors. Different loading strategies have been
proposed so that the start-up delay time is reduced. Here we shall analyze one of
these strategies, namely the new algorithm (Sequential Scattering Algorithm) which
has been proposed in [3]. The algorithm given there is not correct (not all the data are
downloaded). In [3] the authors have considered three other well-known algorithms for
distributing the data - Sequential Loading, Ratioed Partitioning and Data Scattering.
In the present paper we describe an algorithm which uses the same configuration as in
[3]. It seems to work faster than the algorithms mentioned.

2. Statement of the Problem.

2.1. Configuration Design. A distributed memory multiprocessor is con-
sidered. It consists of a hypercube (i.e. a cube upto n dimensions, each of whose 2n

vertices is a processing element (PE)) and a host processor, directly linked with any of
PEs. Ametek’s system14 and iPSC are mentioned as typical examples. Each PE has
its own memory, a copy of the operating system and an application program. All the
processors work in an asynchronous way. The communication messages between the
processors are of two different types:

(i) Communication messages between the host and a hypercube PE

(ii) Communication messages between the hypercube PEs.



An algorithm for downloading data 67

The time for sending (or receiving) a message of the first type, consisting of b
words is equal to

(2.1) t = βh + bτh

where βh is the start-up delay time for the host in seconds and τh is the element transfer
time from the host to a PE or vice versa in seconds per word. Similarly, the time for
sending (or receiving) a message of the second type, consisting of b words is equal to

(2.2) t = βn + bτn

where βn is the start-up delay time for a PE and τn is the element transfer time from
a PE to another PE.

In [3] the authors have used the following values

(2.3) βh = βn = 6.5ms τh = τn = 8.0µs.

2.2. Scheme of Work. At the first stage each of the PEs receives its own
part of data and then executes the application program for it. At the second stage
all the algorithms discussed in paper [3] send the desired result to the host by using
the Dimensional Collapse Technique. It is clear that the differences between the four
algorithms at the first stage are more significant for the our analysis. The algorithms,
execpt for the RP one, distribute the initial array of data in equal parts on the PEs,
which equals the time for executing the application program on any PE. So the most
significant part in our research will take into account the consideration of the time
required for distributing the data among the PEs by the host.

2.3. Basic Notations. We shall use the same notations as in [3], namely
N for the dimension of the initial array of data,
n for the dimension of the hypercube,
k = 2n for the number of PEs in the hypercube,
Td for the time needed so as to transfer the data from the host to the PEs.
Let us assume for simplicity that N is divisible by k.

3. Short Description of the SL, RP and DS Algorithms.

3.1. Sequential Loading Algorithm (SL). The host processor sends its own
portion of N/k elements to any of PEs in the hypercube when the SL Algorithm is used.
The time required for the execution of this operation is given by

(3.1) Td = k[βh + (N/k)τh] = kβh + Nτh.

3.2. Ratioed Partitioning Algorithm (RP). In RP each PE receives various
portions of the initial data array and with the receipt of the last data element the



68 Dinko Gichev

respective PE application program is started. The initial data array is divided among
the PEs so that all the PEs complete their own application programs for one and the
same time. When N is sufficiently large, so that all the PEs of the hypercube are used,
the global time required for downloading the data is

(3.2) Td = kβh + Nτh,

i.e. the same as in the previous case. But since RP is an improvement of SL, it has some
advantages. We are interested in one of them. In these two algorithms the global time
for downloading the data and performing the application program is equal to Td + Tl,
where Tl is the time, required for the last PE to perform the application program to its
own data. In case of RP this time is much smaller (the last PE data are much smaller).

3.3 Data Scattering Algorithm (DS). When DS is used all the data are
initially sent from the host to PE numbered 0 (i.e. the binary code label consists of n
zeros). The time needed for this operation is

(3.3) Tt = βh + Nτh.

Next all the data are distributed in equal parts, each of N/k elements among the PEs
by using the Data Scattering Algorithm (the reverse of the Dimensional Collapse) as
shown below. Namely, (see e.g. [1], [3]) at the i-th step, i = 1, 2, . . . , n, all the PEs
whose binary labels are of form 0n−i+1a (a is any (i-1)-bit binary number) split the
data, received at the previous step, into two halves and then send one of these halves
to their neighbours with binary labels 0n−i1a. The time required for downloading the
data is given by

(3.4) Td = Tt + Ts = βh + Nτh + nβn + (N/k)(k − 1)τn

where Tt is as in (3.3), and Ts is the time for scattering the data over the hypercube.

4. Analysis of the Sequential Scattering Algorithm ([3]). In [3] the
authors have pointed out that, with the use of the DS Algorithm, the host processor was
idle once it had finished loading the data into the PE of binary label code 0n. Hence,
the time for downloading may be reduced by keeping it busy. Thus the Sequential
Scattering Algorithm was suggested. The basic idea was to split the n-dimensional
hypercube into two subcubes; the first one being x-dimensional and the second one –
(n−x)-dimensional. Data Scattering was performed in the first subcube and Sequential
Loading – in the second one.

But we have to point out the following fact. One can split an n-dimensional
hypercube into 2x (n−x)-dimensional subcubes (or vice versa, into 2n−x x-dimensional
subcubes), but he cannot do that into two subcubes, a x-dimensional subcube and a
(n − x)-dimensional one. Now it is clear why the authors have used only (N/2n)(2x +
2n−x) of all the N elements of the initial data array.



An algorithm for downloading data 69

5. A new downloading algorithm. The following method seems to be rea-
sonable.

We split the n-dimensional hypercube into two (n−1)-dimensional subcubes at
the first step. Then the host sends one half of its elements (at this step N/2 elements
are sent) to a PE of the first (n − 1)-dimensional subcube. These operations take

(5.1) T1 = βh + (N/2)τh

time. Next the DS Algorithm is applied to the first (n − 1)-dimensional subcube and
the previous procedure is recursively applied to the second subcube.

More precisely, two different procedures are performed at the second step:
(i) The first step of the DS Algorithm is performed on the first (n−1)-dimensional

subcube. N/4 elements are sent and

(5.2) T ′

2 = βn + (N/4)τn

time is needed.
(ii) The previous procedure is applied to the second (n−1)-dimensional subcube.

More precisely, we split this cube into two (n−2)-dimensional subcubes. Then the host
sends one half of its elements (N/4 elements are sent at this step) to a PE of the first
(n − 2)-dimensional subcube. This operation takes

(5.3) T ′′

2 = βh + (N/4)τh

time. If we use the same model as in [3], (i.e. if conditions (2.3) are fulfilled), then it
is clear that T ′

2 = T ′′

2 , thus, both operations at the second step of the algorithm can be
done simultaneously.

The following procedures are performed at the third step:
(i) DS on the first (n − 1)-dimensional subcube. N/8 elements are sent.
(ii) DS is started on the first (n − 2)-dimensional subcube (which receives N/4

elements at the previous step). N/8 elements are sent.
(iii) Splitting the second (n−2)-dimensional subcube into two (n−3)-dimensional

subcubes. The host sends N/8 elements to a PE of the first of them.
It is clear that all the operations at the third step can be performed parallely

and that takes time equal to

(5.4) T3 = β + (N/8)τ.

Here β = βh = βn and τ = τh = τn. The consequtive steps, up to the n-th one,
are performed analog. Evidently, DS completes for one and the same time for all the
subcubes in a given step. One of the last two 1-dimensional subcubes (i.e. PEs) has
received its N/2n elements at the n − th step. There are N/2n elements in the host
too, and finally they are sent to the last PE at the (n + 1) − st step.



70 Dinko Gichev

Then the global time required for downloading the data is given by

(5.5) Td = T1 + T2 + ... + Tn + Tn+1

where Ti is the time needed for the i − th step of the algorithm. Note that Tn+1 = Tn

because N/2n elements are sent again at the (n + 1) − st step. Thus

(5.6) Ti = β + (N/2i)τ

for i = 1, 2, . . . , n and

(5.7) Tn+1 = Tn.

Hence

(5.8) Td = (n + 1)β + Nτ.

6. Conclusions. From the above it follows that if conditions (2.3) are fulfilled,
then the time (5.8) of this algorithm is better than time (3.4) of the DS Algorithm with
the following value

(6.1) T = Nτ(2n
− 1)/2n.

That is why in our algorithm the host processor is used all the time. We have to
point out that algorithms such as SL and RP, which do not use the capacities of
a hypercube interprocessor network for downloading the data are not very suitable in
such a configuration (Star plus Hypercube). In view of the fact that β is approximately
equal to 800τ and k = 2n, it is clear that the results in (5.8) and (5.4) are much better
than those in (3.1) and (3.2).

REF ERENC ES

[1] S.Horiguchi and W.L.Miranker, A parallel algorithm for finding the maxi-
mum value, Parallel Comput. 10 (1989), 101-108.

[2] Y.Saad and M.H. Shultz, Data communication in hypercubes, J. Parallel and

Distributed Comput. 6 (1989), 115-135.

[3] V.V.R. Prasad and C. Siva Ram Murthy, Downloading node programs/data
into hypercubes, Parallel Comput. 17 (1991), 633-642.

Center of Informatics and Computer Technology

25 A, Acad. G.Bonchev str.

1113 Sofia

BULGARIA Received 28.10.92


