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ABSTRACT. To each relation we associate an equality scheme (for short, ES)
which is equivelent to the system of partitions (for short, SP) defined in [4]. The
main operations of relational algebra are defined for ESs. By using the ESs we
introduce a class of dependencies, called equality scheme dependencies (for short,
ESDs). A set of TSDs is equivelent to a set of tuple generating dependencies (for
short TGDs). A chase procedure is proposed for ESDs and for total 1-ESDs. We
show also that in fact the approach is valid for the general case when we consider
arbitrary, fixed standard realtions of data.

1. Introduction. For each database over an universe of data with predifined
standard relationships we would like to extract out a scheme which represents well the
given database.

At first, as an instance, let us consider the case of equality. The fact that a
large portion of dependencies concerns the equalities of data shows that the equalities
play an important role in the study of relational databases. Equality sets are used to
investigate some types of dependencies [1, 4, 5, 6, 7], but are not powerful enough to
represent even those dependencies whose definition needs only the equalities of data
(for example, multivalued dependencies). In [6, 7] equality schemes (ESs, for short),
were introduced which appear to be a more convenient tool than equality sets. We
show that there is an 1-1 correspondence between the systems of partitions [4] and the
equality schemes. This implies that all results concerning the equality of data in fact
hold for a more general case when the equivalence of data is concerned. We define the
main operation of relational algebra for ESs. By using ESs we can study several types
of dependencies, such as multivalued dependencies [8], partition dependencies [4], etc.
In this paper we introduce a clase of dependencies, called equality scheme dependencies
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(for short, ESDs) and prove that ESDs are TGDs mixed with EGDs. TGDs and EGDs
which up to now have been studied separetely [2, 9] now can be studied in a unified
setting. The chase proposed in [2] for total TGDs is modified for total 1-ESDs. A chase
is also proposed for ESDs.

‘We show that this approach is valid for the general case when we consider arbi-
trary, fixed standard relation of data. Another instance is the case when the universe of
data is partially ordered. An attempt to classify the databases based on the structure
of the universe of data is demonstrated.

The paper is structured as follows: Sections 2-6 cover the case of equality. In
Section 2 we give basic definitions of ESs, SPs and show the relationship between ESs
and SPs. In section 3 we study the minimal ESs. In section 4 we define the main
operations of relational algebra on the set of ESs. In Section 5 ESDs are introduced
and studied. In Section 6 a chase for ESDs is given. Based on the chase proposed
in [2] for total TGDs we present also a chase for total 1-ESDs. In Section 7 we deal
with the general case. In 7.1. we demonstrate how this approach works for the case
of inequality. In 7.2 the general case is studied. In 7.3 we demonstrate an attempt to
classify the databases using the structural properties of the universes of data.

2. Equality schemes and systems of partitions. Let &/ be a finite set
of attributes. The domain of a € U is Dom(a). A tuple t over U is a mapping
U — Ugzey Dom(a) such that t[a) € Dom(a) for all a € U. A relation over U is a set of
tuples over U. For a relation r let Val(r,a) = {t[a]|t € r} and Val(r) = UseuV al(r,a).

Definition 1. Let T be a set.

1. An equality scheme (for short, ES) of T is a couple e =< T\l >, where | is
a mapping T x T — 2 such that:

(i) (Symmetry) For all t;,t; € T : I(t1,t2) = I(t2, 1),

(1) (Triangle condition) Vt,,t3,t3 € T : I(ty,t2) N I(t2,t3) C I(ty,13),

(115) (ty,t2) # U for all ty,t2 €T, t; # ta and I(t,t) =U for allt € T.

The ESs are denoted by e, f,.... An ES of T is finite if T if finite.

2. For a relation r = {t;,...,t,} over U put e, =< r,l > where I(t;,t;) = {a €
U|t;la] = t;[a]}. One can verify that e, is an ES. We call e, the ES of r.

3. Lete; =< T;,l; > be ESs, i = 1,2, and h be a mapping Ty — T2. We write
h: € —.¢ €2 lf l](h,‘g) Q lz(’!(t]),h(tg)) jor all tl,tz € T]. lf h(tl) = h(tz) for all
t1,t; € Ty then we say that h is trivial. If h: e, — e is not trivial then we write also
ey <h e3. We write ey <, €3 if ey < €3 for some h. We write ) =, e; if e; <, e; and
e <.e€;.

4. We write ey = ey iff there is a 1-1, onto mapping h : Ty — T, such that
h(t,ta) = la(h(t1), h(t2)) for all ty,1; € T.

The elements of T are referred to as the names of tuples in databases.
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Proposition 1. Let e be an ES and ry, r; be relations. Then:

1. There ezits a relation r such that e = e,.

2. e,, = e, iff there are 1-1 onto mapping i, : Val(ry,a) — Val(ry,a) such
thatt; € vy <= I, (Va €U : t')[a] = i,(tl[a])).

The proof of (1) for the general case is the same as in the case where e is finite
(see[6]). We omit the simple proof of (2).

Definition 2. Let T be a set and U be a finite set of attributes.

1. A system of partitions (SP, for short ) of T over U is a system P = {P,|a €
U}, where P, is a partition of T, a € U and Nl ey P = Po.

2. Letr = {t1,...,t,} be a relation over U. For a € U let P, be the partition of
r that is defined by the equivalence: t; =p, t; <= t[a] = t;[a]. Put P, = {P.|a € U}.
P, is called the system of partitions of r.

3. Let P; = {Pi|z € U} be an SP of T}, i = 1,2 and h be a non-trivial mapping
Ty - Ty. Wewriteh: P, > P, iff t =p1 t' = h(t) =p2 h(t') for all a € U,
t,t' € T. In this case we write also P; <, P;. We write P; <. Py iff Py <p Py for
some h: Ty —» T,. Py =, P; stand for Py <, P; and P, <, P,. We write P; = P, iff
there is a 1-1, onto mapping h : Ty — T; such that t =py t' <= h(t) =pz h(t') for
allacU,t,t' € T.

The SPs defined as in (1), (2) have been proposed first in [4]. We have:

Theorem 1. There ezists a 1-1, onto mapping F from the set of ESs to the
set of SPs over U, such that:

(i) F(e,) = Py for all relation r.

(1) e1 <. ez iff F(e1) <. F(e2).

Proof. Let e =< T,l > be an ES. Put F(e) = {P,|la € U} where t; =p,
ty < a€l(ty,ty) for all ¢,,t; € T. It is easy to see that F(e) is an SP. F is a 1-1,
onto mapping that satisfies (i), (ii). O

Since SPs represent the equivalences of data, ESs in fact characterize the equiv-
alences of the data in databases.

3. Minimal ESs.

Definition 3. Lete; =< T;,l; > be ES over U, i = 1,2. We write e; C e if
Ty C T; and 1y is the restriction of I; on Ty x Ty. We say that e; is a minimal ES iff
there is no non-trivial e; such that e; C e; and ey =, e3. €; is a minimal ES of e; iff
e; C ey, €1 =, €; and e, is minimal.

The following Theorem 2,3 characterize the minimal ESs:

Theorem 2.  An ESs is minimal iff all non-trivial maps h : ¢ = e are
surjective.
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We omit the simple proof. For finite ESs we have:

Theorem 3.

1. A finite e =< T,l > is minimal ES then all non-trivial h : ¢ = e are 1-1
mappings. In this case for eacht € T there is an integer m such that h(™)(t) = t where
R()(t) = h(t), A(*+1)(t) = R(™(A(2)).

2. Let e, e3 be finite, minimal ESs. Then e; =. e; iff e; = e;.

Proof. 1. is obvious, because h is a permutation of the finite set T'.

2. Let ¢; =< T;,l;; > where T; is finite, ¢ = 1,2. It is evident that e; = e; implies
e; =, e3. Conversly, suppose that e; =, e; where h : €; S e;and k: ez > e;. We have
koh:e; = e;and hok:e; — ;. By Theorem 2 and (1) of this theorem h o k and
koh are 1-1, onto mappings, i.e. h,k are 1-1, onto mappings. Moreover, for t;,t; € T}
there are my, m; such that (ko h)("")(tl) =t, (ko h)""’)(tg) = t;. Put m = myma,.
We have I3(t1,t2) C la(h(t1), h(t2)) and li(t1,t2) = li((k 0 R)™)(ty), (k o h)(™)(t;)) 2
l2(h(t1), h(t2)), i.e. e = €. O

4. The operations of the relational algebra on ESs. We define the main
operations of the relational algebra for ESs. We use the notations of [12].

1. Union. The ESs ey =< Ty,li >, e3 =< T,l3 > are unifiable if l,(t;,t;) =
la(t1,t2) for all ty,t; € Ty N T. In this case let us put T' =Ty UT; and

U (h(t, )N la(t,t2)), if TiNT; # O
l(t],tg) — lGTgnTz

9, otherwise.

e is an ES. We call e the union of e;,e; and denote by e; U e;. The union of {e;|i € I}
is defined by induction and is denoted by Ue.~.
i€l
2. Set difference. Let ey =< Ty,l; >, e =< T3,l; > be unifiable ESs. The
difference of ey, e;, denoted by e; — e, is e =< Ty \ T3, > where [ is the restriction of
Iy into Ty \ T3.

3. Cartesian product of type 1. Let ey =< Ty,l; >, e3 =< T3,l3 > be ESs over
Uy, Uy, respectively, Uy NUy = @. The Cartesian product of type 1 of e, €3, denoted by
€ X €3, i8 e =< Ty X Ty,1 > where for all (l],‘g). (t’,,tlg) €Ty xTy:

I((tr,ta), (1], 13)) = lLi(t, 1) U la(ta, 13).

e is an ES. The Cartesian product of type 1 of two relations ry, r; denoted by r, x r,,
is defined as the Cartesian product of ry, r3 in [12].
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4. Cartesian product of type 2. Let ey =< Ty,l; >, e =< T3,l; > be ESs. The
Cartesian product of type 2 of ey, e3, denoted by e; ® €3, is e =< Ty x T3,! > where for
all (thtZ)v (t'lat’z) €Ty xT;:

I((t1,t2), (13, 13)) = hi(t,1]) N ia(t2,83).

e is an ES. For a € U let @’ be a new attribute such that Dom(a’) = Dom(a) x Dom(a).
For two relations ry = {t],...,t1}, r2 = {t},...,t2} over U the Cartesian product of
type 2 of ry, 2, denoted by r; ® ra, is the relation r = {(t},t?)ll <i<n,1<j< m},
where (t},t3)[a’] = (t}[a], t}[a]).

5. Selection. Let e =< T',l > be an ES and T} C T. The selection of e by T;,
denoted by vr,(e), is e =< T1,l; > where [, is the restriction of [ into Ty x T.

6. Projection. Let e =< T,l > be an ESand X CU, X # @. We write t; = t;
if I(¢1,t3) 2 X. = is an equivalence on T'. Let [t] denote the equivalent class of t. Put
Ty ={[t]lt€ T} and t; : Ty x Ty — 2 where:

Wnhlt)= |J .t

t €[t1] 5 €[ta)

ey =< Ty,l; > is an ES. e, is the projection of e into X and is denoted by 7 x(e).

7. Join. We define the join of two ESs. Join of more ESs can be defined by
induction. For ¢ = 1,2 let ¢; =< T;,l; > be an ES over U;, respectively. For (1;,t;),
(t;,t’z) € T x T; put

my(ty,1)) = L(t1, 1) N (U \ Us),
m?((‘l.‘))v (t’lvtlz)) = Il(tlvtll)nIZ(tzo tlz),
ms(ta,13) = la(t2,t3) N (U \ Uy),
(1), (1,13)) = ma(t1,8]) U ma((ta, ta), (1], 83)) U ma(ta, 13).

Lemma 1. LetT =T x T; and let | be defined as above. Thene =< T,l >
tsan ESon U = Uy UlU,.

The routine proof is omitted. We call e the join of e;,e; and denote e =
J(e1,e3). Let p C IIL, T;. Then Ji,(e1,e3) = ¥,(J(e1,€3)) is called the join under the
condition p of ey, e3.

Proposition 2. Let e; be unifiable ESs for i € I. Then

1. e <. Ue,- Joralliel.

J€l

2. If e; are ESs of disjoint sets and e; <. e for all i € I then Ue.-

i€l

N e
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We omit the simple proof. We have:

Theorem 4. Let ry,r; be relatios over U. Then:
. €y,, €y, are unifiable ESs and e,, Ue,, <, € ur;-

oo s W

€ry —€r; = €ry—ry-

€y, X €r; = €ryxry-

er, ® €, = €r,@r,-

. If 1 C 1y then ¢y, (er,) = €y,

. For X CU, X # O we have wx(er,) = €xy(r)-
fc

Letr; = {t!|j = 1,...,n;)} be relation over U;, i = 1,2, respectively, and p be
3
the ”"natural condition” on ry X r3:

p = {(t1,t2)|ts € r1,t3 € 132 41[Uh NU) = talh N U]}

We have J[,](er. y€r3) = €rypary-

We omit the routine proofs.
Ezample 1. Let ri,i = 1,2,3 be relations in Fig. 1, 2, 3. Then P,,, P,, and
Pryury = Py, U P,, are described in Fig. 4, 5, 6, respectively. e,, and J([p](e,,,e,,) =
€r,0ary are described in Fig. 7, 8, respectively.

| a b ¢ d
ti|ao bo co do
t2/a b co do
ts|ay bo co dy
ty|ar bo o do
Fig. 1. Relation r;.

aRa o8R8

[t1, 3], [t3, ta];
[t1, 3, 4], [ta);
[t1,ta,t3], [ta];
[‘l ) t2v t(]o [t3];

Fig. 4. P,,.

a0 oR

I a b ¢ d
vy [ag by ¢ d;
vy [ag by c3 d;
va|ay by c3 dy
Fig. 2. Relation r;.
[v1,v9),[v3); @a:
[”h ”3]; [03]; b :
[vZa v3]v [vl]; c:
[v,va),[va); d:

Fig. 5. Py,.

c d e
wy [co do e
wz |co dy e
w3 |co dy e
Fig. 3. Relation rj.

[tl ) ‘z]. [ta, t4]9 [”l y 03], [03];
[tl s 83y ‘4]9 [t2]v [vl ) 93]9 [02];
[tl ) ‘11 ‘3]’ [t4]’ [”29 03], [”l];
[tl ) 12) tl]’ [t3]v [vh "Q]s [03];

Fi‘o eo any, = Pr‘ U P"-
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t, ab t (t,,w,) abcd (t,,w;)
d c
bd c be ad
be ce
t, acd Il (t,w,) acde t,w,)
Fig. 7. e,,. Fig. 8. Jy,(er,,er,)-

One can see that h : Py, .t P,, where h is the mapping that takes v; to t;,
(i = 1,2,3). In other words we have P,, <; Py, and e,, <j &,,. I (Fig. 9) constructed
as in the proof of (1), Proposition 1, is a sample relation of e,,.

I Ia b c do
wy | ity sty titaty  tilaly

wy | taty 2 tatits  tatyiy
w3 | taty tatity tatity i3
wy | t4lz latts U4 tatytz

Fig. 9. A sample relation of e,,.

5. ES dependencies.
Here we assume that Dom(a) N Dom(b) = O for a # b.

Definition 4. An ES dependencies (ESD, for short) is an ezpression of the
form ey, <, e; where e;,e; are ESs and h : ¢ 2 e3. An ESD e; <, ey is finite if
ey, e are finite. A relation r satisfies a = ey <j e; iff for all ky : e, 2 e, there ezists
ko : €3 = e, such that ky = kyo h.

Let C;,C; be sets of dependencies and a be a dependency. We write Cy F a if r
satisfies a for all r that satisfies C;. We write C; F C; if C; F a for all a € C;. We write
61 ECQ 1fCl }“CQ and c; l-C;.

The details of TGDs and EGDs can be found in [4, 9]. TGDs and EGDs
generalize many important types of dependencies. To a € U let V(a) denote a set of
variables whose domain is Dom(a). Suppose that V(a)nV(b) = @ fora # b. For X CU
put V(X) = ll,exV(a). A tableau over U is a pair < w,] > where w € V(U), I C V(U)
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and [ is finite. A valuation of I is a mapping p : U {wla]|lw € I} — U Dom(a)
a€U a

such that p(w([a]) € Dom(a). In the natural way p cean be extended into iumapping
I — Dom(U). A TGD is a pair @ =< I3,1; > where I}, I, are finite subsets of V(¥),
I C I,. A relation r satisfies a if for all valuations p, such that p;(f;) C r there exists
an extension p; of p; onto I3 such that p(l;) Cr. An EGDisapair =<z =y, >
where I is a finite subset of V(U), z,y € V(a) for some a € U. A relation r satisfies §
if for all valuations p such that p(I) C r there must be p(z) = p(y). We have:

Lemma 2. Let r be a relation and I C V(U).

1. For a valuation p of I and h, : I — Dom(U) where hy(t)[a] = p(t[a]) we
have p(I) C r iff hy : €1 — e,.

2. Leth : e; = e, and py, be a valuation of I where py(w(a]) = h(w)[a] for all
a €U. Then pp(I)Cr.

We have:

Theorem 5. EGDs and TGDs are finite ESDs.

Proof. 1. Let 8 =< z = y,I > be an EGD where I = {v,,...,v,}. Let
J = {wy,...,w,} where w; is obtained from v; by identifying z with y. Put h: I — J
where h(v;) = w;. One can verify that h : e; 2 ey. Put 7 = e; < €. The proof that
{b} = {7} is left for the readers.

2. Let a =< I, I; > be an TGD where I) = {vy,...,v.}, [2 = {v1,...,¥n, ...,
vm}. Put 7 = ej, <; ef, where i is the identity mapping Iy — I;. One can verify that
{a}={r}. O

Ezample 2. 1. Functional dependency X — Y can be represented by ESD
a = e <p ey where e; =< T;,l; >, T; = {uivvi}v’l(“la”l) = xv‘?(“?yv?) = XY and
h(uy) = u2,h(vy) = va.

2. Multivalued dependency X —— Y is represented by ESD a = ¢; <) €3
where ¢; =< T, l; >, T} = {u1,n1}, Tz = {ug,v3, w2}, i(v1, 1) = X, l3(uz,v3) = X,
Iy(uz, w3) = XY, lz(v3,w3) = X(U \ XY) and h(u1) = u3, h(v1) = va.

3. Join dependency #[Xj,...,X,,) is represented by ESD 7 = e; <, e; where
e =< T‘.',li >, Tl — {tly---atm}a T; = Tl U {tO}y Il(tiatj) — lz(tl'stj) = X; nxJ for
1 <i,j <m,ly(to,t;) = X; and h is the identical mapping of Tj into T;.

We have:

Theorem 6. For a set of finite ESDs C; we can find a set of EGDs and
TGDs C; and vice versa, for a set of EGDs and TGDs C; we can find a set of finite
ESDs Cy, such that Cy = C;.

Proof. Let C; be a set of finite ESDs. Without loosing of generality, suppose
that Cy consists of one ESD, C; = {a} where a = e; < e3. By Proposition 1 there
there are I; D V(U) such that e; = e;, i = 1,2. Suppose that I = {t;,...,t,}. For
a€U,i,j=1,...,nif h(t;) = h(t;) then put
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Qg5 =< t.-[a] = tj[a],Il >

EGD(O) = {aa'.-’jla EU,1,j: h(t.') = h(i,’)}.
Moreover, put e3 = ¥,(1,)(€2) =< I3,l3 >, TGD(a) = {< I, I3 >} and C; = EGD(a)u
TGD(a). We can verify that C; = C;3. The second part of theorem follows from
Theorem 5. O

6. Chase of ESDs and total 1-ESDs. Let h; : ¢} — ¢} where e;- are ESs

5 n n
of pairwise disjoint sets T;, (¢t =1,...,n;5 = 1,2). For h: UT,‘ — T; where
=1 =1
n n n
h(t) = hi(t) if t € T} we have h : Ue'i = Ueg. Denote h = U h;.
=1 =1 =1

n
Definition 5. Union of a; is ESD a = e; <, e; whereej = U c} forj=1,2
. t=1
and h = U h;.
=1
Remark that union is defined only for a; = €} <, e} where ¢! are ESs of
pairwise disjoint sets. A "renaming” can turn an arbitrary ESD into a ESD satisfying
this condition.
Theorem 7. LetC = {a;|i € I} be a set of ESDs. ThenC = Ua,-.
i€l
Proof. Suppose that a; = €] <j €}, ¢} is an ES of Tjforiel,j=121Ifr
satisfies C and k : U i — e, then denote the restriction of k into e} by k;, we have
i€l
k; : e} = e,. Since r satisfies C there must be k! : e§ — e, such that k; = k o h;. By
Proposition 2 we have k = Uk: s Ue', = e and k = Uk: ° Uh,-, i.e. r satisfies

i€l i€l i€l i€l
Ues.
i€l '

Conversely, suppose that r satisfies Ua.-. For a fixed i let k; : e‘i > e, and
i€l
wo = ki(to) where 1o is a fixed element in T,' Put K;: U T,' - UT; where
3 3
o J k1), ifteTy,
Ki(t) = { wo, otherwise.

We can verify that K; : Ue‘1 = e,. There must be K! : Ue‘z = e, such that
i€l 13
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Ki= Ko (U h;). Let k! be the restriction of K! into Tj. We have k! : e} = e,. For
1€l

t € T} we have k! o h;(t) = K} o U h; | (t) = Ki(t) = ki(t), i.e. r satisfies ;. Since
jEI
this holds for all ¢ € I, r satisfies C. O
Next we define a chase for total ESDs. The approach is based on the method

proposed in [2] for total TGDs.

Definition 8. Let a = e; <j ez be an ESD where ¢; =< T;,l; >, i = 1,2,

respectively. Then:
1. a is a 1-ESD Ifsz\h(T])' =l

2. a is a total if for all t; € Ty \ K(Th): | J la(ta, h(t1)) = U.
HeT

Lemma 3. Ifa;i=1,...,n, are total ESDs then U a; 1s a total ESD.

=1

Lemma 4. An ESD a is equivalent to a set of total 1-ESDs iff a is equivalent
to some total ESD f = e, <} e; where e; are ESs of T;, respectively, and |T2\h(T})| > 1.

Lemma 5. Leta = e; < €2, B = e3 <k e4 be 1-ESDs where ¢; =< T}, l; >,
i=1,...,4, Ty = h(Th) U {t}}, Tya = k(T3) U {t3}. Then
1% PM‘T5=T3XTI, ‘5:T5XT5—'2H where

h(t,w), if t3 = ug,

ls((ta, 11), (3, )) = l3(t3, u3) N 1y (ty, up)N
Nia(td, h(t1)) N 1a(td, h(wy)),  otherwise.

Then es =< Ts,ls > is an ES.
2. Put Tg = k(Ts) x h(T1) U {(t3,})}, where for ty, uq € k(T3),13,uz € h(T}),

lz(‘z. ‘Ilz), if g = Uy,
fo((t0:82), (4 42) = 4 4,4, u) 0 (82, ua)
Niy(td, t3) N Ia(th, ua),  otherwise.

and lg((13, 13), (w4, ua)) = la(t3, ua)Nlz(ty, u3). Then eg =< Ts,lg > is an ES. Moreover,
if we put k' : Ts — Tg where k'(t3,ty) = (k(ts), h(t1)) then K :es 3 eg and e5 <y eg 18
a 1-ESD. Denote e5 < €g by B o a.
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3. If a, B are total then B o a are total.
We omit the routine, long proofs.

Definition 7. (Product of total 1-ESDs) Let a,3 be 1-ESDs. We call o a
the product of a, 3.

The set of total 1-ESDs with the product defined in Definition 7 forms a monoid.
Theorem 8. LetC = {a,...,} be a set of total 1-ESDs. ThenC = ao...0f.

The long proof will be presented in a full version of this paper.

7. Generalization. Theorem 1 shows that though ESs are defined by the
equalities of data in databases they in fact are equivalent to SPs which are determined
by the equivalences of data. Thus ESs in fact characterize the equivalence of data. This
implies that the results known up to now for FDs, JDs, TGDs, EGDs, etc., hold for
a larger class of dependencies. In the followings we show that our approach described
in Sections 1-6 is valid for other predefined structures of data. In 7.1 we deal with
inequalities, or with partial orderings of data. In 7.2 we consider the general case.

7.1 Schemes representing the inequalities of data.

Definition 8.

1. An inequality scheme of T overU is a pairi =< T, > where | : TxT — 24
that satisfies the followings:

{l) I(t],ta) U l(tg,h) =U for allty,t, € T, and

(i) (Triangle condition) Vi, ta,t3 € T : l(ty,t2) N I(t3,13) C l(ﬁ,t;’).

2. Letr = {tj,t3,...,t,} be a relation over U where Dom(a) is completely
ordered by <, for all a € U. The inequality scheme of r is i, =< r,l, > where
l.(t1,t2) = {a € U|ty[a] <, ta[a]}. One can verify easily that i, is an inequality scheme.

7.2 Schemes representing an arbitrary standard relationships of data.

oo
In this section for a set Alet A™ = (Ax...x A) and A®) = | J A™.
n times e

For a € let p, C Dom(a)(*). The system p = {p,|a € U} is called the system of
standard relations of data.

Definition 9.
1. Let T be a set. A p—scheme of T is a system s = {S, C T*)|a € U} where
for all a € U there is a mapping v, : T — Dom(a) such that:

(‘1,‘2, <l ,t") € S. == (‘D.(t]), U.(tg), e .,v.(t..)) € Pa-
2. For a relation r = {t1,...,ta} the p-scheme of r is s" = {S]|a € U} where
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(tiystigy- -y tin) € S; < (t.'![a],t.-,[a],...,t.-,,,[a]) € pa-

p-scheme of a relation is a p-scheme.

3. Let S; CT™, i=1,2 and h: Ty —» Ty. We write Sy <x Sz iff h(51) C 3
where h(S1) = {(h(t1),--., h(tm))|(t1,- . tm) € S1}. Let s; = {Sila € U} be p-scheme
of T;, i = 1,2, respectively, and h : Ty — T;. We write 8; <j 82 (and h : 8, = 83) iff
81 <4 82 for alla € U. We write sy <. 33 if 81 <p 83 for some h: Ty — T. It is easy
to see that if h: 8y — 83, k:8; — 83 thenkoh : 8; — s3.

Similarly to (1) of Proposition 1 it is easy to see that for each p-scheme s there
is a relation r such that s™ = s.

7.3. Structure of the universes of data. We consider the universe of data
with standard relations of data p = {p,|a € &} where p, C Dom(a)(*) for a € U. In
practice we usually have to deal with the following structure:

1. Trivial structures: cases are possible:

a. p,=0

b. ps = Dom(a)(*)

c. pa = {(z)|z € Dom(a)}

2. Equational structures: Let =, be an equality relationship in Dom(a). Then
pa = {(z,y)|z,y € Dom(a) : z =, y}. In practice we often meet with equational
structures of data in the form of an equality, an identity or an equivalence.

3. Inequational structure: Let <, be a partial order in Dom(a). Then p, =
{(z,y)|z,y € Dom(a) : z <4 y}. In practice, inequational structure are necessary for
those data where we would like to apply, for instance, SORT, INDEX, etc. opetations.

4. Algebraic structure: Let p, be an n-ary operation in Dom(a). Then let p, be
the "graph” of p,, i.e. pa = {(Z1,...,2Zn,¥)|Z1,...,Zn, ¥y € Dom(a) : pa(2z1,...,2,) =
y}. The algebraic structures can represent logical, numerical or character operations.

8. Conclusion. We have described the advantages of using the schemes in
the study of relational databases. The schemes represent more clearly the interactions
between the dependencies of data, the dependencies of tuples and the dependencies of
attributes. However, this approach is valuable for only the typed databases [2, 9] where
the relationships of data range within the domain of attributes. Another problem is to
find those schemes which are suitable to represent the databases with several structures
on each domain.
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