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ABSTRACT. The functional dependency (FD) was introduced by E. F. Codd.
Several types of families of FDs which satisfy some conditions are known under
the name normal forms (NFs). The most desirable NF is Boyce-Codd NF (BCNF)
that has been investigated in a lot of paper. It is shown [4] that every set of
attributes with an associated set of FDs has a decomposition into third NF which
has the loss-less-join property and preserves FDs. However, for BCNF this does not
always exists. The key is an interesting concept in the relational datamodel. In this
paper we investigate the time complexity of algorithms and problems concerning
sets of all minimal keys of relation schemes and relation in BCNF class. We give
two algorithms that find a BCNF relation r such that r represents a given BCNF
relation scheme (i.e. K, = K,, where K, and K, are sets of all minimal keys of r
and s). This paper also gives two algorithms which from a given BCNF relation
find a BCNF relation scheme such that K, = K,. We estimate these algorithms.
We prove that in BCNF class the time complexity of problem that finds a BCNF
relation representing a given BCNF relation scheme s is exponential in the size of
s. Conversly, we show that the complexity of finding a BCNF relation scheme s
from a given BCNF realtion r such that r represents s also is exponential in the
number of attributes. The concept of Armstrong relation for FD was introduced
by R. Fagin. In database theory it is studied by many researchers. It is known
that in BCNF class a relation r represents a relation scheme s iff r is an Armstrong
relation of s. Consequently, our four algorithms and two problems are still true
when r is an Armstrong relation of s.

1. Introduction. Let us give some necessary definitions and results that are
used in next section.

! Research supported by Hungarian Foundation for Scientific Research Grant 2575
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Definition 1.1. Let R = {ay,...,a,} be a nonempty finite set of attributes,
r = {h1,...,hm} be a relation over R, and A,B C R.
Then we say that B functionally depends on A in r (denoted A L5 B) iff

(Vhi, h; € r)((Va € A)(hi(a) = hj(a)) = (Vb € B)(hi(b) = h,~(b)))
Let F, = {(A,B): AABCR, A —{—0 B}. F, is called the full family of functional

dependencies of r. Where we write (A, B) or A — B for A —{-» B when r, f are clear
form the contexzt.

Definition 1.2. A functional dependency over R is a statement of the form
A — B, where A,B C R. The FD A — B holds in a relation r if A —. B. We also
say that r satisfies the FD A — B.

Clearly, F, is a set of all FDs that hold in r.

Definition 1.3. Let R be a nonempty finite set, and denote P(R) its power
set. Let y C P(R) x P(R). We say that y is an f-family over R iff for all A, B, C,
D,CR
(1) (AvA) €y,
(2) (A,B) €y, (B,C)ey= (A,C) €y,
(3) (A,B)ey, ACC,DC B= (C,D)E€y,
(4) (A,B)€ey, (C,D)ey= (AUC,BUD)€y.

Clearly, F, is an f-family over R.

It is known [1] that if y is an arbitrary f-family, then there is a relation r over
R such that F, = y.

Definition 1.4. A relation scheme s is a pair < R, F >q, where R is a set
of attributes, and F is a set of FDs over R. Let F* be a set of all FDs that can be
derived from F by the rules in definition 1.3. Denote A* = {a: A — {a} € F*}. A*
is called the closure of A over s. It is clear that A — B € F* iff B C A*.

Clearly, if s =< R, F > is a relation scheme, then there is a relation r over R
such that F,=F* (see, [1]). Such a relation is called an Armstrong relation of s. It is

- obvious that all FDs of s hold in r.

Definition 1.5. Let r be a relation, s =< R, F > be a relation scheme, y
be an f-family over R and A C R. Then A is a key of r (a key of s, a key of y) if
A —Lo R (A— Re€ F*, (AR) € y). A is a minimal key of r(s,y) if A a key of
r(s, y), and any proper subset of A is not a key of r(s,y). Denote K,,(K,, K,) the set
of all minimal keys of r(s,y).

Clearly, K,, K,, K, are Sperner systems over R.

Definition 1.8. Let K be a Sperner system over R. We define the set of
antikeys of K, denoted by K=, as follows:

-1 _{(ACR:(BeK)=>(BZA)and (ACC)=> (3B € K)(BCC))}

4 Cepauxa 2-3/93
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It is easy to see that K~' is also a Sperner system over R.

It is known [6] that if K is an arbitrary Sperner system over R then there is a
relation scheme s such that K, = K.

In this paper we always assume that if a Sperner system plays the role of the
set of minimal keys (antikeys), then this Sperner system is not empty (does not contain
R). We consider the comparison of two attributes as an elementary step of algorithms.
Thus, if we assume that subsets of R are represented as sorted lists of attributes, then
a Boolean operation on two subsets of requires at most |R| elementary steps.

Definitiom 1.7. Let I C P(R),R€ I, and ABel = ANB € I. Let
M C P(R). Denote M* = {NM': M’ C M}. We say that M is a generator of I iff
Mt = I. Note that R € Mt but not in M, since it is the intersection of the empty
collection of sets.

Denote N ={Ae€l:A#n{A'el:AC A'}}.

In [6] it is proved that N is the unique minimal generator of I. Thus, for any
generator N’ of I we obtain N C N'.

Definition 1.8.  Let r be a relation over R, and E, the equality set of r,
ie. E, ={Ej:1<i<j<|r|}, where E;; = {a € R : hi(a) = hj(a)}. Let
T, ={A€ P(R):3E;; = A, BE,; : AC E,g}. ThenT, is called the mazimal equality
system of r.

Definition 1.9. Let r be a relation, and K a Sperner system over R. We say
that r represents K iff K, = K.

The following theorem is known ([8]).

Theorem 1.10 Let K be a non-empty Sperner system and r a relation over
R. Then r represents K iff K~! = T,, where T, is the mazimal equality system of r.

Let s =< R, F > be a relation ;chem,e over R, K, is a set of all minimal keys of
s. Denote K ;! the set of all antikeys of s. From Theorem 1.10 we obtain the following
corollary.

Corollary 1.11 Let s =< R, F > be a relation scheme and r a relation over
R. We say thet r represents s if K, = K,. Then r represents s iff K;! = T,, where
T, is the mazimal equality system of r.

In [7] we proved the following theorem.

Theorem 1.12 Let r = {hy,...,h,,} be a relation, and F an f-family over
R. Then F, = F iff for every A € P(R)
(| E; if3E;€E, :ACE;
Hr(4)= { <5

R otherwise
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where Hp(A) = {a € R: (A,{a}) € F} and E, is the equality set of r.
We say that a relation scheme s =< R, E > (arealtion r) is in BCNFifVAC R
either AY = Aor AY = R (Hfp,(A)= Aor Hg,(A)=R).

2. Results. All relation and realtion schemes are investigated in this section
are in BCNF. We construct four algorithms concerning minimal keys of relations and
relation schemes. We estimate these algorithms. We present two problems the worst-
case time complexity of which are exponential.

Let s =< R, F > be a relation scheme over R. From s we construct Z(s) =
{X*: X C R}, and compute the minimal generator N, of Z(s). We put

T,={ACN,:AB€ N,:AC B}.

It is known [1] that for a given relation scheme s there is a relation r such that
r is an Armstrong relation of s. On the other hand, by Corollary 1.11 and Theorem
1.12 the following proposition is clear.

Proposition 2.1. Let s =< R, F > be a relation scheme over R. Then
K'=T,

Definition 2.2 Let s =< R, F > be a relation scheme. We say that s is a
k-relation scheme over R if F = {Ky — R,...,K,, — R}, where {K,,...,K,,} is a
Sperner system over R. It is easy to see that K, = {Ky,...,Kn,}.

Clearly, if s =< R, F' > is in BCNF then use the algorithm for finding a minimal
F* = F'* see [10]. Conversely, it can be seen that an arbitrary k-relation scheme is
in BCNF. Consequently, we can consider a relation scheme in BCNF as a k-relation
scheme.

Remark 2.3 It is known [10] that s =< R, F > is in BCNF iff its minimum
cover is a k-relation scheme. Consequently, the BCNF property of s is polynomially
recognizable.

Let r be a relation over R. From r we compute. E,. We construct the maximal
equality system T, of r. By Theorem 1.10 we obtain 7, = K;!. Denote elements of 7,
by A],...,Ag.

Set M, = {A;—a : a€ R, i = 1,...,t}. Denote elements of M, by B;,..., B,.
We construct a relation ' = {hg, hy,...,h,} as follows:

For all a € R, ho(a) = 0, for each i = 1,...,8 hi(a) = 0 if @ € B;, in the
converse case we set h;(a) = 1.

By [10] v’ is in BCNF and K, = K, (1). It is easy to see that M, and r’ are
constructed in polynomial time in the size of r.

Set Hp,(A)={a€ R : (A,{a}) € F,}, Zg, = {A : HF,(A) = A}. Denote by
NF, the minimal generator of Zp, .
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Based on definition of BCNF relation and from (1) we can see that a relation
r is in BCNF iff Np, = Nf,. Because for an arbitrary relation r Np; is computed in
polynomial time, the BCNF property of r can be tested in polynomial time.

We give the following algorithm that from a given relation scheme s constructs
a relation r such that r represents s.

Algorithm 2.4

Input: a BCNF relation scheme s =< R, F >

Output: a BCNF relation r such that K, = K,

Step 1: From s we construct Z(s) = {X+ : X C R}

Step 2: Compute the minimal generator N, of Z(s)

Step 3: Compute T, = {A€ N, : AB€ N, : AC B}. Denote elements of T,
by Al,...,Ag.

Step 4: Set Q, = {Ai—a : a € R, i = 1,...,t}. Denote elements of Q, by
B,,...,B.

Step 5: Construct a relation r = {hg, h1,..., R} as follows:

Forall a € R, ho(a) = 0, foreachi = 1,...,l hi(a) = 0if a € B;, in the converse
case we set h;(a) = 1.

Based on Proposition 2.1 and Remark 2.3 we obtain K, = K, and r is in BCNF.
It is easy to see that the time complexity of Algorithm 2.4 is exponential in the number
of attributes.

It is known [15] that there is an algorithm that finds a set of all antikeys from
a given Sperner system.

Algorithm 2.5 (Finding a set of antikeys)

Input: Let K = {By,..., Bn} be a Sperner system over R

Output: K!

Step 1: We set K; = {R— {a} : a € B;}. It is obviouse that K, = {B;}"!

Step ¢ + 1: (¢ < m). We assume that K, = F, U {X,,..., X, }, where
X1,..., Xy, containing Byyy and Fy = {A € Ky : Bgyy € A}). Foralli (i =1,...,4)
we construct the antikeys of {By41} on X; in an analogouse way as K. Denote them
by A,..., A} (i=1,...,1). Let

Kepr=FU{A): A€ Fy=> Ay ¢ A, 1<i<t, 1<p<ri}.

We set K~! = K,,.

Theorem 2.8 [15] For every ¢ (1 < ¢ < m), Kg = {B1,...,B,}7!, i.e.
Kn=K.

It can be seen that K and K~! are uniquely determined by one another and
the determination of K~! based on our algorithm does not depend on the order of
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By,...,By. Denote K, = FoU{Xy,...,X,,} and I, (1 < ¢ < m — 1) is the number of
elements of K.

Proposition 2.7 [15] The worst-case time complezity of Algorithm 2.5 is

m-—1
O(|R? Z tauy),

9=1

where

u,,:

lo—t, ifly>1
1 ifly=1t,

Clearly, in each step of our algorithm K|, is a Sperner system. In cases for which
lg <lm (g=1,...,m—1) it is easy to see that the time complexity of our algorithm
is not greater than O(|R|?|K'||K~"|?). Thus, in these cases Algorithm 2.5 finds K~ in
polynomial time in |R|,|K|, and |K~!|. It can be seen that if the number of elements
of K is small then Algorithm 2.5 is very effective. It only requires polynomial time in
|R|.

By Algorithm 2.5 we construct a second algorithm that finds a relation such
that this relation represents a given relation scheme. By Remark 2.3 it is simple that
we can consider an arbitrary relation scheme in BCNF as a k-relation scheme.

Algorithm 2.8

Input: s =< R,F = {Ky = R,...,K,, — R} > be a k-relation scheme

Output: a BCNF relation r such that K, = K,

Step 1: From K = {K,,...,Kn)} we construct K~! = {B,,..., By} by Algo-
rithm 2.5

Step 2: Set M = {B;—a : a€ R,i=1,...,t}

Step 3: Denote elements of M by A,,..., A, construct a relation

r = {ho,h1,...,h;} as follows: For alla € R : hg(a) = 0. Fori=1,...,l we
set hi(a) = 0 if a € A, in the converse case h;(a) = i.

By Remark 2.3, Corollary 1.11 we obtain K, = K,, and r is a BCNF relation.

Clearly, set M and relation r are constructed in polynomial time in the size of
m-1

K-'. Consequently, the time complexity of this algorithm is O(|R|> E t,u,), meaning
=1

of t4, uy see Proposition 2.7. In many cases this algorithm requires ;olynomid time in
the size of s (see Proposition 2.7).

Now we construct two algorithms which find a BCNF relation scheme such that
a given BCNF relation represents this relation scheme.

Given a relation scheme s =< R, F >, we say that a functional dependency
A — B € F is redundant if either A = B or there is C — B € F such that C C A.
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Algorithm 2.9

Input: a BCNF relation r = {h,,...,h,,} over R.

Output: a BCNF relation scheme s =< R, F > such that K, = K,.

Step 1: Find the equality set E, = {E;; : 1<i<j<m}

Step 2: Find the maximal equality system 7,. Denote elements of 7, by
Ay, A,

Step 3: For each B C R there is not A; such that B C A;, we set B — R.
Denote T the set of all such functional dependencies.

Step 4: Set F =T —Q, where Q ={X - Y €T : X — Y is a redundant
functional dependency}.

Clearly, by Theorem 1.12, Algorithm 2.9 finds a k-relation s such that a given
BCNF relation r represents s, and r is an Armstrong relation of s (i.e. F, = F*). It
can be seen that the time complexity of Algorithm 2.9 is exponential in the number of
attributes.

Algorithm 2.10 (8] (Finding a minimal key from a set of antikey)

Input: Let K be a Sperner system, H a Sperner system, and C = {b;,...,b,} C
Rsuchthat HF-'=Kand 3Be K : BCC.

Output: D€ H

Step 1: Set T'(0) = C

Step i+ 1: Set T = T(i) — by

T ifVBeEK :T¢B
T(i+1)=
T(i) otherwise
We set D = T(m).
Lemma 2.11 [8] If K is a set of antikeys, then T(m) € H

Lemma 2.12 [8] Let H be a Sperner system over R, and H™! = {B,,..., By}
be a set of antikeys of H, TC H. ThenT C H, T # @ if and only if thereisa BC R
suchthat BET™', BZ B; (Vi:1<i<m).

Based on Lemma 2.12 and from Algorithm 2.10 we have the following algorithm.

Algorithm 2.13 (Finding a set of minimal key from a set of antikeys)

Input: Let K = {B,,..., By} be a Sperner system over R.

Output: H such that H~' = K.

Step 1: By Algorithm 2.10 we outpute an A,, set K(1) = A;.

Step i + 1: If there exists a B € K such that B € B; (Vj : 1 < j < m), then
by Algorithm 2.10 we compute an A;4;, where A;4y € H, Aiyy C B. Set K(i 4+ 1) =
K(i)U Aj41. In the converse case we set H = K(i).
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Proposition 2.14 [16] The time complezity of Algorithm 2.13 is

m-1

O(n( Z(Hv + ntgug) + k¥ + n)),

g=1
where |R| = n, |K| =k, |H| = m, meaning of Iy, t;, u, see Proposition 2.7.

Clearly, in case for which [; < k (Vg: 1 < ¢ < m —1) the time complexity of
our algorithm is O(|R|?|K|?|H|). It is easy to that in these case Algorithm 2.13 finds
the set of minimal keys in polynomial time in the size of R, K, H. If |H| is polynomial
in |R| and |K|, then our algorithm is effective. It can be seen that if the number of
elements of H is small then Algorithm 2.13 is very effective.

Algorithm 2.15

Input: Let r be a BCNF relation over R

Output: a BCNF relation scheme s such that K, = K,

Step 1: From r compute E,

Step 2: From E, compute the maximal equality system 7T,

Step 3: By Algorithm 2.13 we construct a set of all minimal keys H of r

Step 4: Denoting elements of H by A;,..., A,, we construct a relation scheme
as follows: s =< R, F >, where F = {A; —» R,...,A,, — R}.

Based on Theorem 1.10, Algorithm 2.13 and Definition 2.2 we have K, = K,. It
is clear that the time complexity of this algorithm is the time complexity of Algorithm
2.13. In many cases this algorithm is very effective (see Proposition 2.14).

Theorem 2.16 [14] Let K is a Sperner system over R. Denote s(K) =
min{m :|r| = m, K, = K}. Then (2|K~|)"/? < s(K) < |K~}| +1.

Remark 2.17. Let us take a partition R = X U,...,UX,,UW, where |R| = n,
m = [n/3],and |X;| =3 (1 <i<m).

We set

H = {B:|B| =2,B C X, for some i} if |W| =0,

H={B:|B|=2,BC X;forsomei:1<i<m-1lor BC X,}if [W|=1,

H={B:|B|=2,BC X;forsomei:1 <i<mor B=W}if |W|=2,

It is easy to see that

H'={A:|AnX;|=1,Vi}if |W|=0,

H'={A:|AnX;|=1,(1<i<m-1)and |[AN(X, UW)| = 1}if |W| =1,

H'={A:|[AnX;|=1,(1<i<m)and |[ANW|=1}if |W|=2,

Ifset K= H-'"' i.e. H' is a set of minimal keys of K, then we have

K={C:|C|=n-3,CnX; = O for some i} if |W| =0,

K={C:|ICl=n-3,CNX; =0 forsomei(l1<i<m-1)or|C|=
n-4,CN(X,UW)=0}if |W|=1,
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K={C:|C|=n-3,CnX;=0forsomei(l<i<m)or|C|=n-2,CNW =
Q) if |W|=2.

It is clear that n — 1 < |H| < n+ 2, 3(*/4 < |H~!|, | K| < m + 1. Besed on this
partition, Theorem 2.16, and Algorithm 2.8, 2.9 we obtain the following theorems.

Theorem 2.18. In BCNF class of relations and relation schemes, the time
complezity of finding a relation r from a given relation scheme s such that r represent
s 18 exponential in the size of s.

Proof. We have to prove that:

(1) There is an algorithm finding a BCNF relation r from a given BCNF relation
scheme s such that r represent s and the time complexity of this algorithm is exponential
time in the size of s.

(2) There exists a BCNF relation scheme s =< R, F' > such that the number
of rows of any BCNF relation representing s is exponential in the size of s.

For (1): We have Algorithm 2.8.

For (2): According to Theorem 2.16 we have (2| K~1|)!/2 < s(K). We construct
a k-relation scheme s =< R,F >, where F = {B — R: B € H}. It is obvious that
H-!' = K. Hence, (2!/23[*/8]) < s(K,) holds. It can be seen that BCNF relation
r that is constructed in Algorithm 2.8 has the number of rows at most |U||H~!| + 1.
Thus, we always can construct a BCNF relation scheme s such that the number of
rows of any BCNF relation representing s is exponential in the size of s. The proof is
complete.

Theorem 2.19. In BCNF class of relation and relation schemes over R,
the time complezity of finding a relation scheme s from a given relation r such that
K, = K, is ezponential in the number of attributes.

Proof. It is clear that the worst-case time complexity of Algorithm 2.9 is
exponential in the size of R. In Remark 2.17 we have |[K| < m + 1. We set M =
{C-a : VYa,C : a€ R, C € K}. Denote elements of M by C},...,C;. Construct
a relation r = {ho,hy,...,h} as follows: For all a € R ho(a) = 0, for i = 1,...,¢,
hi(a) = 0 if @ € C;, in the converse case h;(a) = i. Clearly, |r|] < (m + 1)|R| + 1
holds. We construct a relation scheme s =< R,F > with F= {A - R: A€ H™'}.
It is obvious that 3(*/4] < |F|, and K, = K,. Clearly, a minimum cover of any BCNF
relation scheme is a k-relation scheme. Thus, we always can construct a BCNF relation
r in which the number of rows of r is at most (m + 1)|R| + 1 but for any BCNF relation
scheme s =< R, F > such that K, = K,, the number of elements of F' is exponential
in the number of attributes. Our proof is complete.

It is known that in BCNF class a relation r represents a relation scheme s iff
r is an Armstrong relation of s. Consequently, our four algorithms and two problems
are still true when r is an Armstrong relation of s.
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