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ABSTRACT. Let O C C be an open set with simply connected components. We
prove the existence of a sequence (f,) of “conformal mappings” of O onto O and
a universal holomorphic function & on O with the following property: For all
compact sets B C O with connected complement and all functions f continuous
on B and holomorphic in the interior of B there exists a sequence (n;) of natural
numbers such that (® o f,,) converges to f uniformly on B.

1. Introduction and statement of the result. Let O be an open set in the
complex plane with simply connected components. Throughout the sequel we suppose,
that O is represented in the form O = |J,¢;G,, where I = {1,2,...} is a finite set or
I = N and the G, are pairwise disjoint simply connected domains. By H((O) we denote
the set of all functions which are holomorphic on O. A function f € H(O) is called a
“conformal mapping” of O onto itself if for each v € I the restriction f|G, of f to G,
is a conformal mapping of G, onto G,.

For a compact set B C C we abbreviate by A(B) the space of all functions which
are continuous on B and holomorphic in the interior of B. Introducing the uniform
norm A(B) becomes a Banach space.

In this note we deal with the existence of a universal sequence ( f,,) of conformal
mappings of O onto O and a universal function & € H(O) such that the sequence
(® o fn) is dense in certain spaces of functions. We shall give a proof of the following
result.

Theorem. Let O C C be an open set with simply connected components.
Then there ezists a sequence ( f,,) of conformal mappings f, of O onto O and a function
® € H(O) with the following property: For all compact sets B C O having connected
complement the sequence (® o f,) is dense in the space A(B).

There is an extensive literature on the field of functions which are “universal”
in different respects. The development of a theory of universal holomorphic functions
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started with Birkhoff’s result [1], where the existence of an entire function is proved
which is universal under suitable translations. Seidel and Walsh [24] studied the non-
euclidean analogue of the entire problem. Recent results ([7], [8], [10], [14], [18], [19],
[20], [28]) deal with approximation properties in connection with the boundary be-
haviour of universal functions. In some papers ([4], [5], [21], [26]) universal approxi-
mation properties related to problems in summability theory have been investigated.
There exist also universal functions with power series expansions possessing certain
overconvergence phenomena ([2], [3], [15], [16]). For excellent treatices on the theory
of overconvergence we refer to L. Iliev ([12, [13]).

2. An auxiliary result. Let O C C be an open set; (S5,) is called an
exhausting sequence for O if the S,, are bounded open sets with the properties
S. C Sn+1 C O forall n €N,
for each compact set B C O there exists an N € N such that B C Sy.
We start the following useful Lemma.

Lemma. Let G C C be a simply connected domain. Then there ezists a
sequence (gy) of conformal mappings of G onto itself and two sequences (K,) and (L)
of Jordan domains with the following properties:

(1) K.NL,=9 forall n€N,

(2) KnC Ly forall m>n,

(3) KaNKpn=0 for n#m,

(4) (Ln) and (gn(K,)) are ezhausting sequences for G.

Proof. 1. Suppose first G = C. Then we may choose g,(2) := z—(n+1)3 and
Kn:={z:|z-(n+1)* <n+1},

Lp:={z:]z] <n®*+n®+n+1}.

2. Suppose now that G # C and let ¢ be a conformal mapping of the unit disk
D:={z:|z| < 1} onto G.
We first construct three sequences of real numbers. Let

1,3 2
Ty = 2’ 1= 1’ 1= 22
and suppose that for an n > 2 the numbers ry,..., " _1; 81,...,8,-1; t1,...,tn—1 have

already been determined. We choose 1 — ,}; =11, <1, < 8, <1 such that

Spn—-1 + Tn- Sy — T
n-1 n-1 <ty < n n‘
1+rn—13n—l 1—3nrn
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By induction we get the sequences (r,),(8y5), (). The circles

PP TS Lol S k.- B SRR ST
e "1 -r2s2 "l-r2g2?? n "

are subsets of the unit disk and have the following properties
kNI, =0, forall ne€N,
kn Cly forall m > n,
knNky =0 for n#m.

The Mébius transform r,(2) := lz -

maps the unit disk onto itself and satisfies
n

1
ma(kn) = w0 o] < 1= 5=},

The function g, := @ o1, 0 ¢! is a conformal mapping of G onto itself and it is easy
to see that the Jordan domains

K, := @(kn), Ln:= ()
have the desired properties.

3. Proof of the Theorem. For each of the domains G, we choose a sequence
(9vn) N of conformal mappings of G, onto G, and sequences (K,n)nen and (Lon)nen
such that the properties (1)-(4) of the Lemma hold respectively. Let the conformal
mappings g, and f, of O onto O be defined by

n(2) := gun(2), fa(2):=g;)(2z) if z€ G, for some v € I.

The open sets
OQ= U I~ URS= U /G
velwv<n velwv<n
consist of finitely many Jordan domains with pairwise disjoint closures.

Let (Qx) be an enumeration of all polynomials with coefficients whose real-and
imaginary-parts are rational; we construct a sequence (P,) of polynomials as follows.
Suppose that Pp(z) = 0 and that for an n € N the polynomials Py,..., P,_; have al-
ready been determined. By Runge’s approximation theorem [6; p.92] we find a polynom
P, with the properties

(%) max|Po(z) = Paa ()] < o7

(6) max |Po(2) - Qn 0 a(3)] < o7,
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Since (O,) is an exhausting sequence for O is follows by (5) that the function

¥(2):= ) {Pn(2) = Pn-1(2)} (2€0)
m=1
is holomorphic on O, and we will show, that the sequence (f,) and the function ¢
satisfy the required properties.
For all m > n we have U, C O,,, and hence we obtain by (5)

00

max|@(z) - o2 € 30 max|Pa(z) = Pact(2)] < -

m=n4+l ~™

Together with (6) this inequality implies

max |®o fu(2) - Qn(2)] <
!n(Un)

< max [®o fo(2) = Pno fu(2)| + max |P, 0 fu(2) = Qu(2)| =
gn(Un) an(Un)

= max [$(:) = Pa(:)| + max|Pa(2) = Qu 0 ga(2)| < 7.

Let now be given a compact set B C O with connected complement and a
function f € A(B). It follows easily from Mergelyan’s theorem [6; p.92] that we can
choose a sequence (nx) with ny > k and

max|Qn, (2) - f(2)] < 1.

Since (gn(Uy)) is an exhausting sequence for O we have B C gy, (U,, ) for all sufficiently
great k and it follows for those k

max|® o f,(2) = (2)] < _max_|® o fo,(2) ~ Quy(2)| + max|Qua () ~ S(2)| < 3,

ﬂn,, Un.

which proves the Theorem. O

Remark. By simple arguments (for details we refer to [20]) it follows that the
sequence (® o f,,) is also dense in the space

e H(U) for all open sets U C O with simply connected components (established
with the topology of locally uniform convergence on U);

o L(F) (consisting of the Lebesgue-measurable functions on E') for all Lebesgue-
measurable sets E C O (established with the almost everywhere convergence on E).
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