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ABSTRACT. Mandelbrot and Taylor [12,13] and Clark [2] developed two competing

models to explain the non-normality of the price changes. The common feature of
the models is that they are based on subordinated processes, in the Mandelbrot-
Taylor model the resulting process is Lévy motion while in the Clark’s model,
the process admits finite variance. We exhibit option price formulae for the both
models. The formulae are based on the limits of randomized versions of the Cox-
Ross-Rubinstein binomial option pricing formula.

1. Introduction. There is no longer disagreement among specialists that the
distribution of speculative price changes is longer-tailed than the normal. We refer
to the seminal work of Mandelbrot [12,13,14], Fama (8], Mandelbrot and Taylor [15],
Ziemba [22] for the stable Paretian model of the empirical distributions of returns
on common stocks, see also Akgiray and Booth [1], Mittnik and Rachev [18] and the
references there of. For the distributional aspects of returns on treasury bills, we refer
to Du Mouchel (7], for commodity futures see Clark [2], Dusak [6], for exchange rates
see McFarland et al [17], So [21].

Despite the non-normality of the speculative price changes in the practical use
of the modern theory of contingent claim valuation, it is primary referred to the Black-
Scholes ‘option pricing formula and its variations as the limit of the binomial pricing
formula with nonrandom “up’s” and “down’s”, see Cox and Rubinstein [4].

The aim of this paper is to derive continuous option price formulae under the
assumption that the changes of the stock returns are described by a subordinated
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process as suggested in Mandelbrot and Taylor [15] and Clark [2]. In Section 2 we
start with the Mandelbrot-Taylor subordinated Lévy motion as a process describing
the stock movements. The corresponding new Black-Scholes type formula for option
pricing (cf. Harrison and Pliska [9], Cox and Rubinstein [3], Karatzas [10])is given in
Theorem 1. Theorem 2 shows that our formula may remain unchanged even if we allow
certain dependence between the price changes.

The Mandelbrot-Taylor approach is based on the fact that the involvement of
the Lévy motion exhibit leptokurtosis which is typically observed in asset return data
(i.e. they have fatter tails and are more peaked than the normal law) thus making them
very good candidates for the distribution of price differences. Clark [2] approached the
problem of non-normality of price changes distribution modelling the price movements
with a subordinated to Brownian motion process with a directing process having fi-
nite variance. While in both models a subordinated process £(t) = X(7(t)) is used,
Mandelbrot and Taylor [15] assume that the “transaction time” 7(t) is distributed as
a positive stable process, in Clark [2], 7(t) represents the trading volume at time t and
has log-normal distribution. In section 3 we develop a formula for continuous option
pricing based on the Clark’s model, see Theorem 3. Our method is based on the Cox,
Ross and Rubinstein [3] approximation method treating the Black-Scholes formula as
the limiting case of binomial pricing formulae. Rachev and Ruschendorf [19] studied all
possible weak limits of the binomial pricing formulae under the Cox-Ross-Rubinstein
approach. While these limits describe pricing formulae for large class of stochastic pro-
cesses modelling asset returns the Mandelbrot-Taylor and Clark subordinated processes
are not among them. In contrast, in this paper our approach is based on a binomial
option pricing formula with random up’s and down’s mimicking the increments of the
subordinated process chosen to model the price movements. The result is formulae for
continuous pricing subject to subordinated processes of price changes. It should be
noted that, unlike the case of the classical Black-Scholes formula, it appears impossible
to use the hedging argument throughout the whole computation. This is likely to be
due to the incompleteness of the market in our case. Therefore, we do average at a
certain point of our argument. However, we are taking average only with respect to the
magnitudes of the jumps of the underlying Lévy motion, and using a hedging argument
with respect to the directions of the jumps. It is our hope that this partial averaging
will reduce the uncertainty and risk associated with any pricing by taking average.

2. Option pricing formula for asset returns following Lévy motion.
Mandelbrot and Taylor [15] model of non-normal price changes is based on the as-
sumption that the price changes over a fixed number of transaction is normal, but the
number of transaction in any time period is random with infinite variance. More pre-
cisely, let {X(t),t > 0} be a Brownian motion with zero drift and variance v?, which is
viewed as the process of stock log prices on the time scale measured in volume of trans-
actions. Let {7(t),t > 0} be a positive § — stable stochastic process with characteristic
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function
(2.1) E €97 = exp{—vt|6]°/%(1 — i(6/|6]) tan(ra/4)) (0 < a < 2,v > 0))

interpreted as the cumulative volume or number of transactions up to physical time t¢.
Then £(t) = X(7(t)) is a subordinated process to X (t) with a directing process 7(t),
and £(t) represent the (log) price of the stock at time t. (Recall that by stock price
changes in the financial literature one means the difference of the logarithms of the
prices, in other words £(t) = log S(t) where S(t) is the actual price of the stock at time
t , see for example Mandelbrot [12] Harrison and Pliska [9]. The resulting process £(t)
is now a-stable Lévy motion with ch.f.

(2.2) E %) = g—tlodl®

where 0% = v(v?/2)?/?[1 - tan(ra/4)], see Mandelbrot and Taylor [15].To model a
stock price process whose logarithm is £(t) we assume that if the current price of a
stock is § = Sp, the stock price S; at the end of the first period is described by

(2.3)

S1 = u; Sy with probability 1
So=< ' 1o P yg,(“lZIde)

Sy =d;Sp with probability %

In contrast with the standard binomial option priéing model (cf. Cox and Rubinstein
[4]) we assume that u; and d, are random and moreover

(2.4) Uy :=logu;, Dj:=logd,

have heavy tailed distributions. Continuing as in (2.3), the consecutive movements of
the stock are given by

k
(2.5) s, 4 ST[wédl™", or
=1
k
(2.6) log(84/5) & $°(Ui6i + Di(1 - 8)),

=1

where U; := log u; , D; := log d; , and §;’s are i.i.d. Bernoulli (}) independent
of u;’s and d;’s. We assume that the log-increments of our stock price process are
symmetrically distributed,

(2.7) Ui = o|X™|, D; = -U;,
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where n represents the number of movements until the terminal time 7" of a call and
{X.-("), i=1,...,n} are i.i.d. symmetric Pareto r.v.’s with

(2.8) P(IX.-(")l >z)=n"'z7% z>n V" 1<a<2

(For most of commodities and for some stocks it is not a serious restriction to assume
that the log-price changes are symmetrically distributed. In other words we can write,

k
(2.9) log(5x/5) 3 o 3" x,

=1

and thus the process
k-1 k
(2'10) f,.(t) = log(sk/s)v T_n_ <t< T;) k=1,...,n, (fn(o) = 0),

converges weakly to a symmetric a-stable Lévy motion §(t) in D0, T] with ch.f. given
in (2.2), as desired in the Mandelbrot-Taylor model. Let r; denote the “riskless interest
rate” at the ith period,

(2.11) ri= %(u.- +d;).

In contrast with the classical Cox-Ross-Rubinstein model r; = r;(w) is now random.
With this in mind we continue to follow the usual arguments leading to the binomial
option pricing formulae. For fixed w , in order to have an “equivalent portfolio” and
“no riskless arbitrary opportunities”, the value ¢ = ¢ of the call - with expiration
date T which is just n periods away and striking price K — equals
C(") = 2 {(u,...u,.S— K)++[(ul---un—ldnS—K)+
(2.12) 1...Tq
+ ---+(d|ug...u,.S— K)+]+"'+(dl--'dns‘ K)+}

Similarly to the case for non-random u; = u and d; = d (c.f. Cox, Ross and Rubinstein
(1979)) let us argue for ¢(*) in the simplest case n = 1, i.e. when the expiration date
is just one period away. By the end of the period the value of the call ¢, equals
(51— K)4 = bicy + (1 = by)c—; where ¢y = (11§ = K)4, c- = (d1S - K)4 and by is a
Bernoulli random variable with success probability % and independent of u;. In order
to form an equivalent portfolio containing A, shares of stock and B, dollars in riskless
bonds, we must select A; and B, to equate the end-of-period value of the portfolio,

bi(w1SAy 4+ 11 By) + (1= b)(drS Ay + 11 By).
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In other words,
cy —cCo B, = W= dycy

(w—-d)S" 77 (m-dy)S

Then the assumptions “no riskless arbitrary opportunities” and “riskless rate” (2.11)
impliesc = S A+ B, = 51_,(“++c—) = 2'l((ulS K)4++(d1S—-K)4) , which coincides
with ¢(!) in (2.12) as desired.

Formula (2.12) represent the random value ¢(™) of the call. In contrast with
the classical binomial pricing formula, ¢(*) gives us a unique rational value for fixed
w. Now, how much would we be willing to pay for the call at time 0?7 It is quite
reasonable, in the absence of a unique deterministic solution, to look at the mean value

C(™ = E ¢, The next theorem provides an expression for the limit C = lm;no c,

Suppose Z;’s are 1.i.d. uniforms on (0,1) and ¢;’s are independent of Z;’s Rade-

A =

macher random signs. Then X d en="/227"% and rearranging in (X(,..., X)
in an increasing absolute order, say (X ,('2, .

statistics have the same joint distribution as

r 1/a e
("T“) (ar7e, .., al)

where Ty, I'3, ... are Poisson arrivals with intensity 1, independent of ¢;’s

Lemma 1. (Binomial option pricing formula for heavy tailed distributed stock
returns). If the stock movements are described by the “discretized” Mandelbrot-Taylor
model (2.8) — (2.10) then for any n > 1

X,(.",). , we observe that the latter order

S exp(o(fetr)/ayr  T7V®) - K],

(2.13) c™ =
7 T oS /T ) + expl—o(Catt /T, 77

or, equivalently,

l:l

(8 explo(Bimyre

E(q - exP(o(_m )l/a

T "/") K)
tl"l/") '

|-I A

(2.14) c =

where we use the standard notation E,, . ..) to denote the erpectation taken with re-
spect to €;,...,¢€y.

Proof. Recall that r; = ;(u.- + d;), then by the formula for ¢(™)(cf. (2.12),
(2.7), (2.11))

pZtamtrimt,.n)lS exp(o(81 XM + - + 81 XV)) - K]y

c =
nn (¢¢|x"‘)| +¢-¢|X(')|)
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We can rewrite C(®) as

(Sea(x"‘)+ +x) _ K),

(n) (n), ?
- o| X} I -le |
2 " Ht“l(

)
which implies (2.13) and (2.14). O

(2.15) c =

Theorem 1. (Pricing formula for stock returns governed by Lévy motion).
Letting n — oo in the “discretized” Mandelbrot-Taylor model (2.8) — (2.11) implies
Cc™ - C, where

c = g8 exp(Eis, 06T ;) - K)s

(2.16) .
E( a,. )eXp{E._‘ oe;T 1/"'}

Proof. Without loss of generality set o = 1. Using the representatlon (2.14)
for C(®) we let n — oo, then clearly (El‘-*—)‘/a Y (.F—'/a oy &1 ~1/2g.s., and
thus the numerator of (2.14) converges to the numerator in (2.16). Our next step is to
show that the denominator in (2.14) converges to the denominator in (2.16). Using the
above limit relationship it is enough to show the following claim.

Claim. Suppose that a;,a3,... is a sequence of real numbers such that, as
n — 0o,

(2.17) Ea.'q - za.-c; a.s. ,
=1 =1
which is equivalent to 32, a? < co. Suppose r, — 1 as n — oo, then
(2.18) E exp(rn Za;c.-) — FE exp(z a;€;).
=1 =1
Proof of the claim. By Holder's inequality,
n n
|E exp(ra 3 aii) — E exp()_ aiei)l?
i=1 =1
' o0 ' n
< [E exp(2 Y aie)[E(~1+ exp(ra = 1) ) aici)’]

i=1 i=1

=:T) + Ts.
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The term T} in the above product is finite by hypothesis. As r, — 1, the second term
T, is bounded by

/ P(lra — 1||Za.e.| > log(1 + V))dt
0-1
/ P(lra — lllza.ql < log(1 - VA))dt
@19 = {log(1+ VD)
<2 [ o5 % -y
1 2
+2/ exp(~ 57— (087) ).

1)2 '—l a;

The last inequality follows from the exponential bound for 372, b? < oo,

=1

(219) P bl > 1) <2 exp(-
=1

see, e.g. Ledoux and Talagrand [ll] The two integrals in the RHS of (2.18) vanish as
n — o0, since r, — 1 and 3.2, a? < oo, and thus

2 2°° b? Iy )

i=1"%

i=1%
(2.20) E exp(r, Za;q) -FE exp(zn: aie;) — 0.
i=1 =1

To show that

(2.21) E exp(z a;¢;) - E exp(z ai€;)

=1 =1
we use the same arguments as before. Using the exponential bound (2.19) and

)
=1 a; < 00,

|E exp(z a;¢;)— E exp(z a;€;)|?

=1
< const.E(e” Licnpr &6 l)2
© . (log(1+ V1 ))2
< const. /o exp(— 2.:,.4.1 ‘ )dt
! (log(1 + v ))2
+const. /o exp(— 2y, )dt

and the latter bound vanishes as n — co. Combining (2.20) and (2.21) completes the
proof of the claim and, by the bounded convergence theorem, of the theorem as well. O
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The construction of our “discrete” version of the Mandelbrot-Taylor model sug-
gests that the option pricing formula (2.16) may remain unchanged even if the price
changes are dependent. To see that, suppose the rate of return over the i-th period of
time can have two possible values — each of them with probability 1/2:

(2.22) u — 1 =exp(T7V/*W;) -1
and
(2.23) & -1 =exp(-T7/°W;) - 1.

In (2.22) and (2.23), a € (0, 2), W;’s are i.i.d. nonegative r.v.’s, with E W{* <
00, I';’s are independent of W;’s and represent a sequence of arrival times of a Poisson
process with unit rate. The stock price after n periods of time equals

(2.24) S: =15 exp f:(c;U.-‘ +(1-€)Dy)

=1

with ¢;’s being Bernoulli (})r.v.’s independent of (T, W;) and, as before, U} = log u],
D? =log d. In other words, (2.24) reads

(2.25) log(S2/S) = zn:f.-r;‘/"w.-.

i=1

Then, as n — oo, we have

00
(2.26) log(53/5) — 3. &I °W; 4 Sa(04,0,0).

=1

Here S,(04,0,0) stands for a symmetric a-stable law with scaling parameter o, > 0,
given by

(227) o2 = -cl—E WP, ca = (/ z %sinzdz)”! = { M=ajetrarn i @ # 1,
o 0

2/x ifa=1,

see, e.g. Samorodnitsky and Taqqu [20]).The limit relation (2.26) shows that at the
terminal time the distribution of the stock price is the same as in the Mandelbrot-
Taylor model. We now use the assumptions of “riskless interest rate”, r; = }(u.- + d;),
and “no riskless arbitrary opportunities”, to conclude that the mean-value C*(™ of the
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call ¢*("n-periods before the expiration rate equals

C‘(n) =Ec.(n)
27" (eul"’ +Uns K)+

172 Tn

+[(eU1+ +Un—l+DnS -— K)+ + cese

(2.28)

+(8D‘+U’+"'+U"S —K)y)+---

+(eDl+“‘+Du5 — K)+)

Theorem 2. If the stock price after n moves is determined by (2.22) - (2.24)
then :
(2.29) c*™ . c*
where °
2:1 ar;ow; _

(2.30) cr =g K)+

The proof is similar to that of Theorem 1 and thus omitted.

Remark 1. From (2.26), (2.27) the limiting distribution for S, depends on
the distribution of W;’s through the mean EWY. So, one should expect that C* depend
on the distribution of W;’s only through EW{". To see that, we rewrite C* in (2.30) as
follows

oo “ ~1/a A
(ezi-l b Wi S — K)+

-1/a -1/a :
=1 %[er‘ Wite W.‘]

C*'=F

Thus, it is enough to prove that the distribution of the point process

N = {I"-_I/°W.~, i=1,2,..} depends only on E Wy. First it is easy to see that A is a
Poisson process. The next step is to show that its intensity measure yu depends on the
distribution of W;’s only through £ W{. In fact, for any A > 0

Y P VOwi > 2

o |-l
- E/ Gy POVE > 2 Az

A'“/o P(W{ > z)dz = A\™*E WY

H((A,0))

7 Cepanka 2-3/93
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3. Option pricing formula for price changes in the domain of attrac-
tion of the normal law. While Mandelbrot [12,13] set out to explain the non-
normality in price changes by assuming that they are a-stable with a < 2, Clark [2]
presented the opposite hypothesis assuming that the price change is subordinate to
Brownian motion with directing process having finite variance. Clark [2] modelled the
process of stock changes by

(3.1 £(t) = X(7(2)),

that is £ is subordinated to X (t) with directing process 7(t) > 0, E 7(t)? < oo. If
X and 7 have stationary independent increments, E X(t) = 0, and VarX(t) = v%t,
and F 7(t) = Pt then £(t) has stationary independent increments, E £(t) = 0 and
Varé(t) = B v?*t . The special case considered in Clark’s paper is X being a Wiener
process with zero mean and VarX(t) = g3t and r(t) a log-normal, that is the density
of (1) is

1 (log z — p)?
2y _ _
(3'2) f(l, ﬂ'val) - 21‘0121 exp( 2612

),z > 0.

The random process £ has unit increments with density

(3.3) fc(l)(!l) = 2

0o 2 2
-aja, . —og v—p) -y
3rola] / v exp( ) exp( 007 )dv.

2
204 2

Since the choice of a log normal directed process is not completely justified in
the Clark’s paper [2] we shall only assume that r(t) has a finite first moment.

To model a stock price process whose logarithm is £(¢) in (3.1) we assume the
same “discretized” model of stock price as in Section 2, (2.5) and (2.6), but this time
the log-increments of our stock price process are taken to be in the domain of attraction
of- the normal distribution. Specifically, we define the random up’s (i,;’s) and down'’s
(di’s) by

(3.4) log ity := U; := oTY?|In~2X,|, logd; := D; := -U,,

where X, ..., X,, are i.i.d. symmetric r.v.’s with unit variance, and thus the “dis-
cretized” Clark’s model of stock price is given by

k
(3.5) {Sk}e=1,m d {S exp Z(t.’l-/.‘ + (1= €)Di)}k=1,n»

i=1

when ¢;’s are Bernoulli (}) independent of U;’s.
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The same arguments as in Section 2 yield a binomial option pricing formula -
the random value (&,) of a call n periods prior to the expiration date.

Cp =

2-n - - - - -
- - {(ul...u,.S—K)++[(u1...u,.-1d,,_1S—K)++---
(3-6) ™ .-..T" i )

+(dlﬁz...{,ns'_ K)+]+---+(d1---d,.S—K)+},

where 7; is the “riskless interest rate”
S P
(3.7) i = '2-(ui + d;).
In contrast to the Mandelbrot-Taylor model, in the “discretized” Clark’s model,
the product of the interest rate does converge to a constant.
Lemma 2. IfT is the ezpiration date corresponding to n movements in the

discretized Clark’s model, then

(3.8) FrooFnDeds'T,

"Proof. The above limit relation follows immediately from the following claim.
Claim. Let X;, X; ...be a sequence of ¢.i.d. zero mean random variables with
a finite variance 02 = E X}. Then

i [l 4 Loxany 2 o,

=1

Proof of the claim. By the SLLN,

24 ... 2
(3.9) Xit+X0 | 2.

n n-—00

and thus, as 1 — 00,

(3.10) iT12X; = 0 as.
In particular, it follows from (3.10) that

3 -1/2 | =
(3.11) ..ll.lgo" 1P$a:‘x | Xi| = 0 a.s.

Fix any w for which both (3.9) and (3.11) hold. Clearly,

]O‘ 8.+G‘-

(3.12) lim =2 — =1,
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It follows then from (3.11) and (3.12) that for any 0 < € < 1 there is an N = N(w, ¢)
such that for every n > N, and every i < n,

ex.n"" + e—X.‘n’”2
2

2 2
(3.13) log( ) € ((l—e);(—"l,(l+e)§—1‘l).

It follows now that for every n > N

n A’.7l-|/2 -xl"_ll2 2 Y X2 2 .o 2
(314) 3 (log A )e ((1-6)’“—“27'1——",(1“)%).
i=1
Thus by (3.9),
N o e
(1- €)% <liminf z;(log 5 )
=

n Xin—1/2 _x,"—llz 2
e’ +e " o
<l 1 < (1 —_
< ,l‘n_‘s:pz_;(og 3 )_( +e)2

Since this is true for any 1 > ¢ > 0, we conclude that

n Xin—1/2 —X:in—1/2 2
. e +e o
(3.15) ulergo E (log 2 )= 5

=1

The claim now follows from (3.15). O
Remark 2. Relation (3.6) strongly resembles the limit relation for the interest
rate in the Cox-Ross-Rubinstein model. Recall that in their model #; = # is a constant
and 7 = rT where r — 1 is the interest rate over a fixed unit of calendar year, and so
over the elapsed time T, rT is the total return.
The next theorem gives us the option pricing formula for the mean value
C = lim E&"

n-—+00

of the call under Clark’s model.
Theorem 3. (Pricing formula for stock returns governed by the subordinated
process X (7(t))). Letting n — oo in the “discretized” Clark model (3.6) - (3.7) implies

(3.16) ¢ = lim E&* 3 ¢ Tp(5erVTN _ oy, |

N+ 00

where N has standard normal distribution.
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Proof. From (3.6) and (3.4) a simple conditioning argument implies that

T30~ (X 4.4 Xn
(3.17) Cm = pam) = E(Sev ’ (X1+..4+Xn) _ K)+.

rl...f-“

It is sufficient to show (3.16) for T = 1. In other words, we need to prove that
if Xy, X3, .. are i.i.d symmetric random variables with a finite variance 0? = EX?,
then

(S en"”(xl+"‘+xn) _ K)+
n (%exi"—xlz + %e_xi"—xlz)

=1

(3.18) E — e~ (/D p(5e°N _ k),

Let €, €2,.. be a sequence of i.i.d. Rademacher random variables, independent of X,
Xz, ... Then

E (Seﬂ-xlz(x,+...+xn) _K),
".‘=1(lex.-n-1lz + %e'x.'-lh)
(Se"-l 2( X1+ tenXn) _ K)y
E(“....t,.)en-x/z(,,X,+,._+,“x")
E..cn)(S en P (aXa+.AenXn) _ K.

E((x € )en“/’(qx1+...+¢,.x,,)
eeerEn

(3.19) -

= FE

= FEZ,.

Observe that Z, < § a.s. Vn. Therefore, bounded convergence theorem would apply
(3.18) once we prove that

(3.20) Zn — e Y E(SeN - K)y  as.

Since we have already proved that the denominator in Z, converges a.s. to el’
it remains to show that

(3.21) E(q,...c)(Se" HaXittanXn) _ gy, B(Se™ ~ K)y  a.s.

As before, it is enough to prove convergence in (3.21) for w ’s for which both
(3.9) and (3.11) hold. For the simplicity of notation, we will assume that ¢, €, ... live
on some other probability space (1, F1, P;). Denote

(3.22) o™ := n V23X (w),i= 1, nyn = 1,2,

The first step is to show that the sequence Y 7, (;a,(-"), n = 1,2,.--- converges in
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distribution to o N, as n — oo. For the corresponding characteristic functions we get

... T ibeal™
E, exp(wz Eja.(in)) - H Elclaz,u,
=1

i=1

n

_ H(% RN % o—i0as” )

(3.23) =1 . L
- _ 1exn=2 1 —igX;n—/?

= 1:[1(23 J + 23 b] )
T

= H cos( X;n~'/?), °
j=1

and the same argument as in the proof of the lemma above shows that
. n (R) _o202

(3.24) B Lim ¥, =55

Now, (3.24) will imply (3.21) if we show that the sequence

n (n)
(3.25) (SeXsm19% _K)pn=1,2-,

is uniformly integrable. To this end we show that

. n (n)
(3.26) sup El(SeEl" 9%~ K)3 < 0.
n>1

In fact,

EI(SCE;-l ey _ K)} < S’B,JZ;.I o
(3.27) Jp— n ; }
= S Lok o s’H(%e’" VX5 4 %e-’" X j)

=1

Clearly, this is an expression of the same form as in the claim of Lemma 2 and so by
the same argument, it converges to a finite limit as n — oo. This proves (3.26).

REFERENCES

[1] V. AKGIRAY and G.G. BoOTH, The stable-law model of stock returns, Journal
of Business and Economic Statistics 6 (1988), 51-57.



Option pricing formulae for speculative prices ... 189

[2] P.K. CLARK, A subordinated stochastic process model with finite variance for
speculative prices, Econometrica 41 (1973), 135-155.

[3] J.C. Cox, S.A. Ross and M. RUBINSTEIN, Option pricing: a simplified ap-
proach, J. Financial Economics, 7 (1979), 229-264.

[4] J.C. Cox and M. RUBINSTEIN, Options Markets, Prentice-Hall, Inc, 1985.

[5] L. DEVROYE, Non-Uniform Random Variate Generation, Springer-Verlag, New
York, 1986.

(6] K. DusAK, Futures trading and investors return: an investigation of commodity
market risk premiums, Journal of Political Economy 81 (1973), 1387-1406.

[7] W. DuMOUCHEL, Estimating and stable index a in order to measure tail thick-
ness: A critique, Annals of Statistics 11 (1983), 1019-1031.

[8] E. FAMA, The behaviour of stock market prices, Journal of Business 38 (1965),
34-105.

[9] J.M. HARRISON and S.R. PLIsSKA, Martingales and stochastic integrals in the
theory of continuous trading, Stochastic Processes Appl. 11 (1981), 215-260.

[10] I. KAarRATZAS, Optimization problems in the theory of continuous trading,
SIAM J. Control and Optimization 27 (1989), 1221-1259.

[11) M. LEpoux and M. TALAGRAND, Isoperimetry and Processes in Probabilities
in Banach Spaces, Springer-Verlag, New York, 1991.

[12] B.B. MANDELBROT, New methods in statistical economics, Journal of Political
Economy 71, (1963) 421-440.

[13] B.B. MANDELBROT, The variation of certain speculative prices, Journal of
Business 26 (1963), 394-419.

[14] B.B. MANDELBROT, The variation of some other speculative prices, Journal of
Business 40 (1967), 393-413.

(15] B.B. MANDELBROT and M. TAYLOR, On the distribution of stock price differ-
ences, Operation Research 15 (1967), 1057-1062.

(16) J.H. McCuLLOCH, Simple consistent estimators of stable distribution param-
eters, Communications in Statistics-Computation and Simulation, 15 (1986),
1109-1136.



190 Svetlozar T. Rachev, Gennady Samorodnitsky

[17) J.W. McFarLaND, R.R. PETIT and S.K. SUNG, The distribution of foreign
exchange price changes: trading day effects and risk measurement — A reply,
Journal of Finance, 42 (1987), 189-194.

[18] S. MITTNIK and S.T. RACHEV, Stable distributions for asset returns, Appl.
Math. Lett. 213 (1989), 301-304.

[19] S.T. RACHEV and L. RUSCHENDORF, On the Cox, Ross, and Rubinstein model
for option prices, Tech. Report No. 148, Dept. of Statistics and Applied Prob-
ability, University of Caiiforuia, Santa Barbara, CA 93106, 1990, (to appear in
Theor. Prob. Appl.).

[20] G. SAMORODNITSKY and M.S. TAQQu, Stable Random Processes, (in prepa-
ration).

[21] J.C. So, The distribution of foreign exchange price changes: Trading day effects
and risk measurement, Journal of Finance 42 (1987), 181-188.

[22] W.T. ZiemBA, Choosing investiment portfolios when the returns have stable
distributions, Mathematical Programming in Theory and Practice, P.L. Ham-
mer and G. Zoutendijk (Eds.), North-Holland, 1974, pp.443-482.

Svetlozar T. Rachev

University of California, Santa Barbara
Department of Statistics and Applied Probability
Santa Barbara, CA 93106-3110

USA

Gennady Samorodnitsky

College of Engineering

School of Operations Research and Industrial Engineering
FE and TC Building

Cornell University

Ithaca, NY 14853-3801 >

USA



