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ABSTRACT. For distributions T' € D'(Rk x R™) the asymptotic almost period-
icity on R™ is defined with their asymptotic behaviour. Equivalent assertions are
proved that a distribution is asymptotic almost periodic with the given asymptotic
behaviour. ‘

Introduction. The theory of asymptotic almost periodic numerical functions
has been well elaborated with different applications, especially in the theory of differ-
ential equations. In [2] one can find such results collected and systematized. Already
by Schwartz [6] the definition and some properties of almost periodic distributions have
been placed. The asymptotic almost periodicity in spaces of vector valued continuous
functions was elaborated in [5]. Cioranescu in [1] introduced the asymptotic almost
periodicity of distributions. Her results were in the one-dimensional case and they were
applied to a differential equation.

Our definition of the asymptotic almost periodic distributions is in the multi-
dimensional case and it gives simultaniously the measure of the asymptotic behaviour.
It is suitable to discuss solutions of partial differential equations in the space of Schwartz’s
distributions (see [7]), where the situation with the almost periodicity is much more
complicated than in case of differential equations. For example, solutions of A,U(z,y) =
0 are: u = 1, periodic in z and y; u(z,y) = sin z cos z/(cos® z + sh?y), periodic in z,
but not in y; u(z,y) = (2? - y?)/(z? + y?)?, which is almost periodic neither in z nor
in y.

In the definition of the almost periodic distributions we follow the idea and the
results of Schwartz [6] and Cioranescu’s [1] ideas in case of asymptotic almost periodic
distributions.

1. Notations and definitions. By K we denote a compact set in R*; K CC
k " : k
R* means: for every compact set K belonging to R*.
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For h = (hy,...,hm) € R™, h — 0o means that h; — o0, i = 1,...,m. If
5= (treeerdhsm) € NE¥™ then |j] = j1 + -+ + jksm. No= NU{0}..

A function u : R x R™ — R, or a distribution U defined on R¥ x R™ we also
denote by u(-,-) or by U(-,-) respectively.

The notations and definitions for spaces and subspaces of distributions are as in
[6]. For the space of distributions D’ (R* xR™) we write in short D} .. The restriction
of the distribution T € D}, on R¥ x R} we denote by T+.

A filter of distributions {T,,a € A} C D},,, is said to be uniformly conver-
gent in D} if (Ta(- + z,- + y),4(:,")) converges uniformly in z € R y e RT for
every ¢ € Diym.

A sequence {6,} € Dj4m is called a é-sequence if 6, > 0; [é,dz =1,n €N
and suppé, C [—@n,a,], an — 0, when n — oco. If § € Diym, then 6, + ¢ — ¢ in
Dj4m, when n — oo.

Throughout this paper we denote by ¢ a positive and measurable function de-
fined on R™ and such that ¢(h) — 0, when h — oo.

Definition A.[3] We say that distribution T € D}, has the S-asymptotics
related to c on R™ if {T(-,-+h)/c(h); h € RT} converges in D}, to U, when h — oo.
We write in short T ~ ¢(h)- U, h € RY.

Remarks. a) If {T(-,- + h)/c(h); h € R}} converges in D} ., then {T(-+
z,-+y + h)/c(h); h € R} converges in D}, uniformaly in z € K; CC R* and
y € K3 cC R™, when h — oco. This follows from the relation

(T(-+ 2, + 3 + B)/e(h), () = (TCy + B)/e(h), (- = 2, ~ )

and the fact that the set {¢(- — z,- — y); z € K1, y € K3} is bounded in Dyym.

b) If T} and T; belong to D},,., T1 = T3 on R* x R} and T) has the S-
asymptotics related to ¢ on R™, then T; has the S-asymptotics related to ¢ on R™, as
well, with the same limit. This follows from

((TI('y -+ h) - T?("' + h))) ¢(', ')) =0

for every ¢ € Dy4m and enough large h ([4], p. 100).
We denote by

(CB)ik4m the space of continuous and bounded functions f(z,y), z € R*, y € R™,
with the norm || f|| = SUP_ R* ,cR™ |f(z, )|

(CB)ismo = {w € (CB)(R* xR});lim (R .o, w(2,¥) = 0, uniformly in z € R*}.

8 Cepamka 2-3/93
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(CB)apm = {v € (CB)k4m;{v(:,~+h);h € R™} is relatively compact in (CB)k4m }-
(CB)ap,m is the space of almost periodic functions in y.

(CB)agpm = {u € (CB)(RF xRT),u=v+w on R* x R}, where v € (CB)apm
and w € (CB)k4+m0}- (CB)aap,m is the space of asymptotic almost periodic
functions in y.

By, = Dp(R* xR™).
k+mo = {(WE B, m;W(:,-+ h) — 0 uniformly in Diym, when h € R, h — 00}.

We recall that W+(-,-+h) - 0,h € R}, h = oo in B'(R* x RT) if and only if
(WH(-+2z,-+y+ h),4(-,-)) = 0, when h — R, h — oo, for every ¢ € D(R* x RT)
uniformly in z € R¥, y € RT (see [6], p.61). If W € Bj,,.,, then W¥(-,-+ h) = 0 in
B'(R* x RT) when h € RT, h — oo. Conversely, if for W € Bly,., WH(-,-+h) = 0
in B'(R* x RT), then W € B}, .0

2. Almost periodic and asymptotic almost periodic distributions.

Definition 1. A distribution T € B}, is said to be almost periodic on R™
if the set {T(-,-+ h); h € R™} is relatively compact in B}, .

The set of almost periodic distributuions on R™ we denote by By, ...

Let us recall some properties of almost periodic distributions (6, [7D):

1. ¥ T € B, ,,, then DIT € B, ., as well. (j = (j1,--.,Jk4m), J € Ng*™,
No = NU {0}).

2. T € B, ,, if and only if

T= E DJgjv 94 € (CB)ap,m, 7] < 1.

71
3. T € B,,,, if and only if (T + ¢) € (CB)ap,m for every ¢ € Diym.

4. T € B,,,, if and only if for every sequence {c,} C R™ there exists a
subsequence {b,} such that {T'(-, + b,)} converges in B}, when n — oo, that
means that {T'(-+z,-+y+by,)} converges in D}, , when n — oo, uniformly in z € R*
and y € R™.

5 T € By, T#0and if limyoo T'(,- + bp) = S in B, for a sequence
{2} CR™, then § # 0 and limy oo S(-,- — by) = T in B},,,, as well.

Definition 2. A distribution T € B}, 1is said to be asymptotic almost
periodic on R™, in short T € B, ., f T = P+Q, where P € B, . andQ € B}, .,
Proposition. IfT € B, and T = P + Q, where P € B'ap,m and

aap,m
Q € B, .o this decomposition of T is unique.
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Proof. Suppose on the contrary that T = P+ Q = R+ S, R € Bf,,,'m
and § € Bj,,. o Let {c,} be a sequence belonging to R} and such that ¢, — oo,
n — oco. By property 4 there exists a subsequence {b,} such that P(-,- + b,) —
P, and R(-,-+ b,) = R, in B}, +m consequently unpiformly convergent in D; +m and
S(-y- + bn) — 0 uniformly in D},,., when n — oo.

Now from lim,—oo(P + Q)(+,- + bn) = limpoo(R + S)(+,- + b,) uniformly in

%k+m it follows that P, = R;. By property 5 we have P = R, therefore Q = S. O

Theorem. ForT € B),,, and T # 0 the following assertions are equivalent:

1. T € Biypm: T = P+ Q, where P € B, and Q € B}, o, @ ~ c(h).U,
h € RY.

2. There ezist p € Ng and Fj € (CB)aap,m, fj = v; - wj, where v €
(CB)apm, wj € (CB)rymo and {w;(z,h)/c(h);h € RY}, |j| < p, converges when
h — oo uniformly in z € K CC R¥, such that

T= EDJfJ, on R x RT.
l71<p

3. For every ¢ € Diyp, Tt¢ = v+w € (CB)aap,m and {w(z,h)/c(h); h € R}}
converges uniformly in z € K C R*, when h — oo.

4. For a 6-sequence {é,}, (T#& ) € (CB)aapm, n € N and for every ¢ € Diym
there ezists a function v € (CB)qap m such that ((T * ¢)(z,h) — v(z,h))/c(h) converges
uniformly in z € K CC R¥, when h — o0, h € R}.

Proof. 1=2. Suppose that T = P+ Q, P € By,,, and Q € B}, ,. By
property 2 we have P = E|j|< Djv-, v; € (CB)apm- Also, by Remarques in [6],
p.58, Qt = qu DI w;, where w; € (CB)H,,,.o and by Proposition and Remarks
b) we have w (z h)/c(h) converges when h € R, h — oo uniformly in z € K cC R,

| < 1.
il Since the zero belongs to (CB)ap,m and to (CB)k4m,, as well, we have proved
that 1=>2.

2=>1. Suppose that T has the form given in assertion 2. Then

T=3 DIv; + ) Diw; on R*xRY.
121<p 121<p

By property 2, lel ™ DI v;=pE B, m- It remains the second sum. We will

prove that DJw € Biymo 171 < p. Since T € Bj,,, wehave Q =T - P € B},
and we have Just seen that P € B, .. Now, we have to prove that Q € B}, , using
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the fact that Q* = 305, DJw For ¢ € D(R* x RT) and |j| < p
(Djwj(- +z,-+y+h),e) = (-l)m/ o wj(a +z,b+y+h)p(a,b)dadb — 0

when h — oo uniformly in z € R , ¥ €RY.

Thus we proved that Q*(-,-+ h) — 0 in B'(R* x RT) hense Q € B}, o-

In the same way we can prove that DI wJ( -+h)/c(h) converges in D}, when
h € R}, h — co. Now, 2=>1 follows from Remarks b).

123. T = P+ Q, where P € B, and Q € Bj,, ,, then we have to
prove that T*¢p = P+x¢dp+ Q *¢ € (CB)“,,_ for every ¢ € Diym. By property 3,
P+¢ =v € (CB)apm. For the second addend Q * ¢ = w we have that it belongs to

(CB )k+m .
From relation

w(z,y) = (Q *¢)(2,9) = (Q(- + z,- + ¥)((, ")), Hz,¥) = &(~z,-),

it follows the asked properties of w.

3=>2. Suppose that T * ¢ € (CB)aapms ® € Diym. By Theorem 9.3 in [2],
T * ¢ belongs to (CB)aapm if and only if for every sequence {c.} C R}, ¢, — oo,
when n — oo, there exists a subsequence {b,} such that (T * ¢)(z,y + b,) converges
uniformly in z € R¥, y € R}, when n — oo. Since for ¢ € D(R* x RY)

lim (T4 )@,y +8) = lim (TC+2,+y+ba),0(,")
lim (T*(-+z,-+ y + bn), &(-, "),

n-—+00

T+(-,- + b,) converges in B’(R* x RT'). By the cited Remarques in [6], p. 58, there
exists ¢ € N such that

T=3 D'f;j on R*XR}, f; €(CB)im, lil<q,
171<q
where fj, |7] < g, have the property: for every {c,} C R}, ¢, — 00, when n — o0, there
exists {b,} C {cn} such that fj(z,y+ b,) converges when n — oo, uniformly in z € R*
and y € R}, |j| < ¢. By the mentioned theorem in [2], it follows that f: € (CB)app,m,

|7] < ¢. Therefore f, = v; +w; , where v; € (CB)ap,m, w; € (CBgH.m'o, 7] < q,
and w,; has the askeg a.symptotlc beha.vnour Consequently 3=>2

3=>4 is trivial because of é,, € Dgym, n € N.

4=$3. First we have to prove that the set A = {§;(-+z,-+y); 1 €N, z €
R*, y € R™} is dense in Diym. Suppose that U € D), and

(U('y°)v6i(' +z,-+ y)) - (U * 5,‘)(2,y) =0
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for every i € N, z € R*, y € R™. Then for any ¢ € Diym, (U +8;),6) =0,i€ N, and
(Ua¢) == hm (Ua6l' ’.‘¢) = hm (U *5,’,¢) =0

It follows that U = 0 and that A is dense in D4, O

We know that T * ¢ € (CB)g4m for every ¢ € Dyyo,. If the assertion 4 is true,
then for every {c,} C R}, ¢n — oo, when n — oo, there exists a subsequence {b,} such
that (T * é;)(z,y + bn) converges uniformly in z € R, ye R}, when n — oo, 1 € N.
This is also true for the sequence in n € N, (T(-,-) *é1(- + a, + b)) (z,y + b,.) (T =
6:)(z+a,y+b+b,) for every i € N and for some fixed a € R¥, b € R™. By the Banach-
Steinhaus theorem it follows that (T * ¢)(z,y + b,) converges uniformly in z € R¥,
y € R}, when n — oo, for every ¢ € Dyym. Consequently, (T * ¢) € (CB)aap,m-

We know that the decomposition of (T * ¢) = v + w is unique as an element of
(CB)aap,m- Therefore w has the asked property.
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