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ABSTRACT. In this paper we shall deal with such mixed boundery value problems
when the kind of the boundary conditions are changing in the limits of the same
surface of the border of the domain. Such problems represent a wide class of the
boundary valuc problems of Mathematical Physics, Theory of Elasticity, Hydro-
dynamics etc. We may distinguish the next basic methods of solving of the mixed
boundary value problems: the methods of theory of functions of complex variables
[1], [2], the method of integral transforms [3], the method of orthogonal polyno-
mials [4], asymptotic methods [4], variational methods [4], numerical methods and
some others [4], [5], [6].

The method of dual, triple, N-tuple integral (or series) equations was widely
used in last years. This method proved to be the most effective one among the con-
temporary analytical methods of solving of mixed boundary value problems (5], [6].

Let us consider in detail the method of dual (triple) integral equations. The
first problem on dual integral equations was formulated by H. Weber (7] and solved
by E. Beltramy [8]. Solving of dual (triple, N-tuple) integral equations with different
kernels is the subject of many articles (see, for example, bibliography in [5], [6], [9],

[10]).
The present paper deals with some questions of the theory of dual integral
equations with hypergeometric functions in the kernels.

1. The system of [ of N-tuple integral equations is a set of the integral
equations:

‘ . .
® L, Y alnenKiradr = fiay

D] k=1

(361;", i=1,N, j=1,10),
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where D{, Iij are segments of real axis, ¢x(7) are unknown functions defined on the

following set
N

I
p=UUm,
i=1 =1
K ;’ (r,z) is i-kernel of j-equation, f,-j (z) are known functions defined on I, a{,‘(r) are
known weight functions, . . .
DiNDjN...N D) = Aj,

here A; is a set of a non-zero measure. It should be noted that in (1) we may take the
line integral.

It can be noted also that definition (1) may be formulated in a matrix form,
if on every I we define the vector function f in the form of a column matrix with
| components, the set of N matrix integral operators is defined on D and provided
the unknown vector-column ¢(7) satisfies N-matrix integral relations. It is easy to
generalize (1) to the n-dimensional case.

Ifl=1, N =2in (1), we have the following dual integral equations:

[ an(nenKi(r2)ir = fi(2), = € 1
(2 P
/D, ax(7)p(r)Ka(r,z)dr = fa(2), z € I.

When [ = 1, N = 3, then we have the triple integral equations. The N-tuple
integral equations have the following form:

/o ~ ai(r)p(r)Ki(r,2)dr = fi(z)

(3) VK
(ei<z<e€i41,i=1,N, =0, eny = ).
Below we state some results from the theory of the dual integral equations.
Lemma 1. The dual integral equations
00
/ Y(r)Ky(r,z)dr = g1(2), (0 < z < a),
(4) ?

/o % Ga(r)W(r)Ka(r, 2)dr = ga(2), (a < z < o0)

are equivalent to the following dual integral equations:

/w G(r)e(r)Ky(7,2)dr = fi(z), (0< z < a),
(5) Poo
/o @(1)Ka(r,z)dr = fa(z), (a < z < ),
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if the function G1(7) does not vanish on a set of a non-zero measure.
The result follows immediately by the substitution

¢(r) = Gi(r)¥(r), G(r)=[Gi(7)]™",
%(z) = fi(z), (i=1,2).
Lemma 2. The dual integral equations (5) can be reduced to the pair of dual
integral equations:

/ooo G(1)®(7)K,(r,z)dr = Fy(z), (0< z < a),

(6) o
/o ®(1)Ky(r,2)dr =0, (a < z < ),

if the appropriate integral transforms with kernels I?—;(r,z), I?;(r,z) ezist.
To prove this lemma we introduce a new unknown function ¢(7):

) o(r) = 8(r) + / ” Ka(r,2) falz)dz + / " Ka(ry 2)g(2)dz,

a
where g(z) is arbitrary function but such that integral / K,(r,z)g(z)dz exists and
has a finite value °

A@) =@ - [ Knoe@)| [ Rarmns@dy+ [ Rir)s)dy]dr.
0 a 0

Lemma 3. The dual integral equations (4) may be reduced to the following
dual integral equations:

/w ¥(r)Ky(r,z)dr =0, (0 < z < a),
0

(8) o
/o 3(r)Gy(r)Ka(r,z)dr = R(z), (a < z < o),

if the appropriate integral transforms with kernels I?‘(r,z), I?;(r,z) ezist.

It is evidently that if the function G;(7) does not vanish on a set of a non-zero
measure, then dual integral equations (4) can be easily reduced to dual equations (5) by
application of Lemma 2. If the function G;(7) vanishes on a set of a non-zero measure,
then we introduce a new unknown function ¥(7):

$(r) = ¥(r) + / ” Ka(r,2)g(z)dz + / " Ka(r,2)n(2)dz,
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where

R = 0a(a) - [ Kalr, )| [ Ra(rmaay+ [ Rt vpato)dy]ar.

2. Dual integral equations involving Gauss hypergeometric function.
Consider the pair of dual integral equations:

(9) /:"(zt)b—l 2F\(a,b;¢c; —zt)p(t)dt = fi(z), (0<z<1)

(10) /loo(:l:t)"'1 2F1(a,b;c+ a; —zt)p(t)dt = fo(z), (1 <z < o0)

where ¢(t) is unknown function, f;(z), (¢ = 1,2) are given functions on its intervals
and the parameters a, b, ¢, a satisfy the conditions:

1
(11) a>0, ¢>0, 0<a<l, b—a<%<c—b,0<;$l.

Let us introduce and study the following analogue of the integral operator B
from [11]:

(12) Eg'z{’f(z) =g(z) = 2 /lm(:l:t)g"'1 Fi(a,b;c; —zt) f(t)dt.

The new composition relations are expressed in the following theorems.

Theorem 1. Ifa>0,c¢>0,0<a<1,8+A+b>c+ a, then the relation

(13) lf-a-b.pﬁz.':f(“) - %Exap+xf(=),
holds, where

14 Y g t)*~1t f(t)dt
( ) v,ﬂf= I\(a) 0(2— ) f()

i8 an Erdélyi-Kober fractional integral of order a > 0 (see [9]).
Theorem 2. If0<%51,%—l<u<%—a,0<a<1,a+u<l,

% — B 2 0, then the following relation

(15) P(),;\K:a+yf = K::i,\+yf)
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where
(16) Dsf(z)= r_%\_) / oo(t — )P A f(t)dt

is the Weyl-type fractional integral of order A > 0 [9] and

zﬁ—v-a

(17) K2,f(z) = /0 (@ + 07 f(2)dt.

I'(a)sinra
Theorem 3. (Inversion formula for E::) Ifo< % <1L,0< A+ % -1<

c—b<A+l<l,0<a< l,b—a<l<c—b, then

(18) f(z) =217 (a)D'*(1 + ) Lim Lah(z),

where

h(z) = (1 = z)[r(z) — r(1)],
r(z) = Czs U {tl"’% {t%I:_':f:'l_E_xg(t)}} (z),

9=B2f;
—p\n—-1 d‘ln-l
Lnf(e) = s s s (),

Lif(z) = -t;i—z{zf(z)}; zr(z) - 0, z — 0;
r(z) = 0, z — oo;

and

Uf@) =2 "H(3).

Now let us go back to dual integral equations (9), (10). Applying the operator
I _4 5 to equation (9), using composition relation (13) (see Theorem 1) for equation

(9), we receive that the dual integral equations are reduced to a single integral equation
(19) / (zt)*'p(t)2 Fi(a, b; ¢ + a; —zt)dt = R(z),
1

where
I'a+c¢)

—ng_x_.ﬁzxfl(Z), (0 <8< l)

(20) R(z) =
P fa(z), (1 <z < ).
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By the help of formula (18) we write the solution of (9), (10) in the closed form:
~ -1
a,b
(21) o(z) = (B, p11) R(2).

3. The hybrid dual integral equations. Let us consider the following hybrid
dual integral equations:

(22) / gl 3R (v, e, ag; 1 4 v, by —zt)p(t)dt = pi(z), (0<z<1),
1

(23) / 271 3 Fy (a1, az, by —zt)p(t)dt = pa(z), (1 <z < o0).
1

where 3F,(v, a1, az; p + v,by; —zt) is a generalized hypergeometric function [12], ¢(t)
is the unknown function, p,(z) and py(z) are given functions, 0 < pu < 1, v > 0,
0<ar<L,0<l<L,0<A+2-1<bh—aa<A+l<l,e3>0 b >0,
Qg — <%<b1—¢12.

Using the integral relation between functions 3F3(v,a;,az;p + v,by;2) and
2F1(a, b;c; z) [13], we receive

Az*771 3 Fy(v, a1, 005+ v, by —2t) =

(24) z
/ z"'l(z - Z)“-I gpl(al,az;b]; —zt)dz,
0

where
A=T(I@)(pu+v).

Considering (24) as Abel’s integral equation with respect to function 3Fy, we
find the following expression for ¢ Fy:

271 Fy(a, ag; b5 —2t) =
(25) ey
Ar~ " sin ;nrz / ghtv-1 SFy(v, a1, a3; i + v, by; —ot)(z — 7)~Hda.
0

After multiplying equation (22) by Az#*+¥~1(z—z)~#"~1sin ur, integrating with
respect to z form 0 to z and then differentiating with respect to z, we obtain

00 z
/ t""¢(t)At" sin pur (diz/ z“"’”"gFg(u, ay,ag; e+ v, by —zt)(2 — z)"‘dz) dt =
1 0

=m(2), (0<2z<1),
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where d [
p1(z) = Ax"'sin ;ur-E/ 2*t =1 (2 - z)7¥py(2)dz.
0

Now set v = a; and rewrite equation (23) in the form:
(e o}
/‘ (t2)°271p(t) 2F1 (@1, ag; by; —zt)dt = 2°37 1 py(2).

It should be noted that now the pair of equations (22), (23) are reduced to a
single integral equation

(26) ./loo(tZ)a’_l 2F1(01,02; b]; —Zt)%(t)dt = P(Z),

where

(27)

az—=14A

{ 2715 (2), (0<z<1),
P(z) =
z

P2(2), (1 <2< o).

Applying the inverse operator (18), we can write the saught solution in the
closed form:

- -1
(28) ¢(2) = (Bif*) ™ P(a).
It is worth mentioning that one can solve the following dual integral equations
/ 71 (ay, By —27)p(1)dr = g1(z), (0<z < 1),
0

(29) w0
/0 17 ®(ay, By; —z7)p()dr = g3(2), (1< z < 00).

by analogy with these in section 2.
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