Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Serdica

Bulgariacae mathematicae publicationes

Сердика

Българско математическо списание

The attached copy is furnished for non-commercial research and education use only. Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to third party websites are prohibited.

For further information on
Serdica Bulgaricae Mathematicae Publicationes
and its new series Serdica Mathematical Journal
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

ON THE STRICTLY PARALLEL PLANES OF THE SPACES WITH LINEAR CONNECTION

K. TRENČEVSKI

ABSTRACT. In this paper are proved two theorems. The first theorem generalizes one Wong's result. Namely, it is proved that if M_n is a simply-connected differentiable manifold with linear connection which admits a parallel r-plane and if the corresponding double tensor vanishes identically, then that r-plane is strictly parallel. The second theorem gives a necessary and sufficient conditions for a paracompact differentiable manifold to admit a linear connection such that given r linearly independent vector fields $X_{(1)}, \ldots, X_{(r)}$ and s linearly independent 1-forms $w^{(1)}, \ldots, w^{(s)}$ are parallel. These conditions are given by (3). Three corollaries are given at the end.

Suppose that M_n is an n-dimensional differentiable manifold with linear connection. An r-plane Σ in M_n (i.e. a field of r-planes in M_n) is said to be parallel if, for any two points A and B a vector in $\Sigma(A)$ is displaced into a vector in $\Sigma(B)$ by the parallel transport along any curve from A to B. An r-plane Σ in M_n is said to be strictly parallel if the r-plane Σ has a basis of r parallel differentiable vector fields.

A necessary and sufficient condition for an r-plane to be parallel is that one, and therefore everyone, of its bases $\{\lambda_{(\alpha)}^i\}$ $(\alpha \in \{1, \dots, r\})$ satisfies the recurrent relations of the form

(1)
$$\lambda_{(\alpha);k}^{i} = A_{\alpha k}^{\beta} \lambda_{(\beta)}^{i}$$

where $A_{\alpha k}^{\beta}$ $(\alpha, \beta \in \{1, ..., r\})$ are components of a covariant vector for fixed α and β ([1],[2]). The components

(2)
$$A_{\alpha k l}^{\beta} = \partial A_{\alpha k}^{\beta} / \partial x^{l} - \partial A_{\alpha l}^{\beta} / \partial x^{k} + A_{\alpha k}^{\delta} A_{\delta l}^{\beta} - A_{\alpha l}^{\delta} A_{\delta k}^{\beta}$$

 $(\alpha, \beta, \delta \in \{1, \dots, r\}, k, l \in \{1, \dots, n\})$ transform as a tensor skew-symmetric in k and l, if α and β are fixed. Furthermore, for fixed k and l, $A_{\alpha k l}^{\beta}$ has tensor character with respect to α and β under changes of basis ([2]). So $A_{\alpha k l}^{\beta}$ is called a double tensor.

Wong ([2], Theorem 6.1) has proved locally that a parallel plane in M_n is strictly parallel if and only if the double tensor associated with it vanishes identically. Now we shall give a similar theorem in the global case.

Theorem 1. Assume that M_n is simply-connected differentiable manifold with linear connection and assume that M_n admits a parallel r-plane Σ . If the double tensor associated with Σ vanishes identically, then Σ is a strictly parallel plane.

Proof. Suppose that M_n is a connected topological space. We choose a point $x \in M_n$ and r linearly independent vectors $X_{(1)}, \ldots, X_{(r)} \in \Sigma(x)$. For an arbitrary point $y \in M_n$ there exists a path z(t) which connects x and y. The vectors $X_{(1)}, \ldots, X_{(r)}$ can be parallel transported along the path z(t) to the point y. We will prove that the transported vectors at the point y do not depend on the choice of the path z(t). It is sufficient to prove that if z(t) is a closed path, i.e. y = x, then each of the vectors $X_{(1)}, \ldots, X_{(r)}$ transports at the same vector.

For an arbitrary point w there exists a coordinate neighbourhood U_w and r parallel linearly independent vector fields on U_w which form a basis for Σ reduced on U_w . It follows from the above Wong's theorem. Now we have an open cover \mathcal{U} for M_n . From the Lemma of factorization ([3]) an arbitrary closed path which is null-homotopic in M_n is equivalent to a composition of finite number of \mathcal{U} -lassos. Since M_n is simply-connected manifold, the closed path z(t) is null-homotopic and the Lemma of factorization can be applied. So it is sufficient to prove our statement that $X_{(1)}, \ldots, X_{(r)}$ are independent of the parallel transport in case the path z(t) is a \mathcal{U} -lasso. Now it is sufficient to prove that each vector $X \in \Sigma(w)$ transports at the same vector, if the path z(t) is contained in a set $U_w \in \mathcal{U}$. It is satisfied because if $Y_{(1)}, \ldots, Y_{(r)}$ are parallel vector fields on U_w , then

$$c_1Y_{(1)}+\ldots+c_rY_{(r)}$$

is a parallel vector field where c_1, \ldots, c_r are constants.

We have constructed r vector fields on M_n . It is obvious that they are parallel, differentiable and they are linearly independent vector fields, i.e. Σ is a strictly parallel plane. If the manifold M_n is not connected, then the above statement can be applied to each component of the connection. \square

Theorem 2. Assume that M_n is a paracompact differentiable manifold and assume that $X_{(1)}, \ldots, X_{(r)}$ are linearly independent vector fields on M_n and $w^{(1)}, \ldots, w^{(s)}$ are linearly independent 1-forms on M_n . Then there exists a linear connection on M_n

such that $X_{(p)}$ and $w^{(q)}(p \in \{1, ..., r\}, q \in \{1, ..., s\})$ are parallel vector fields and 1-forms if and only if for each $p \in \{1, ..., r\}$ and for each $q \in \{1, ..., s\}$

(3)
$$w^{(q)}(X_{(p)}) = C_p^q = \text{const.}$$

Proof. Let us suppose that $X_{(p)}$ has components $\lambda_{(p)}^{i}$ and $w^{(q)}$ has components $\mu_{i}^{(q)}$ with respect to a local coordinate system. Then (3) is equivalent to

(4)
$$\lambda_{(p)}^i \mu_i^{(q)} = C_p^q = \text{const.}$$

If there exists a linear connection such that $X_{(p)}$ and $w^{(q)}$ are parallel $(p \in \{1, ..., r\}, q \in \{1, ..., s\})$, then it is obvious that (4) is satisfied.

Inversely, let us suppose that the matrix $\left[\lambda_{(p)}^i\mu_i^{(q)}\right]$ has constant components and its rank is q. It is well-known from the matrix theory that there exist invertible matrices $\left[c_{\alpha}^p\right]_{r\times r}$ and $\left[d_q^{\beta}\right]_{s\times s}$ with constant components such that

$$\begin{bmatrix} c_{\alpha}^{p} \lambda_{(p)}^{i} d_{q}^{\beta} \mu_{i}^{(q)} \end{bmatrix} = \begin{bmatrix} I_{q} & 0 \\ 0 & 0 \end{bmatrix}.$$

Since $\lambda_{(p)}^i \mu_i^{(q)}$ do not depend on the coordinate system, then it follows that $[c_\alpha^p]$ and $[d_q^\beta]$ do not depend on the coordinate system either.

We can define new vector fields $\lambda_{(\alpha)}^{\prime i}$ and 1-forms $\mu_i^{\prime(\alpha)}$ by $\lambda_{(\gamma)}^{\prime i} = c_{\gamma}^p \lambda_{(p)}^i$ for $\gamma \in \{1,\ldots,r\}$, and $\mu_j^{\prime(\alpha)} = d_{\beta}^{\alpha} \mu_j^{(\beta)}$ for $\alpha \in \{1,\ldots,q\}$ and $\mu_j^{\prime(\beta)} = d_{\gamma}^{\beta-(n-s)} \mu_j^{(\gamma)}$ for $\beta \in \{n-s+q+1,\ldots,n\}$. Since the vector fields are linearly independent and also for the 1-forms, it can be verified that $r \leq n-s+q$. The new vector fields and 1-forms satisfy

$$(5) w'^{(\alpha)}(X'_{\beta)}) = \delta^{\alpha}_{\beta}$$

$$(\beta \in \{1,\ldots,r\}, \alpha \in \{1,\ldots,q,n-s+q+1,\ldots,n\}).$$

Since M_n is a paracompact manifold, then there exists a locally finite open covering of coordinate neighbourhoods $\{U_i\}$ such that the sets \bar{U}_i are compact. Then ([3]) there exist functions $\{f_i\}$ such that

- 1) $0 \le f_i \le 1$,
- 2) supp $(f_i) \subseteq U_i$,

$$3) \sum_{i} f_i(x) = 1.$$

In an arbitrary coordinate neighbourhood U_i can be chosen n-r vector fields $X'_{(\gamma)}$ $(\gamma \in \{r+1,\ldots,n\})$ such that

(6)
$$w'^{(\alpha)}(X'_{(k)}) = \delta_k^{\alpha}$$

where $k \in \{1, \ldots, n\}$, $\alpha \in \{1, \ldots, q, n-s+q+1, \ldots, n\}$, and $X'_{(1)}, \ldots, X'_{(n)}$ are linearly independent vector fields. Then $X'_{(1)}, \ldots, X'_{(n)}$ generate a flat linear connection $\Gamma_{(i)}$ on U_i ([4]) such that $X'_{(1)}, \ldots, X'_{(n)}$ are parallel vector fields on U_i . Since $X'_{(1)}, \ldots, X'_{(n)}$ are linearly independent, it follows from (6) that $w'^{(1)}, \ldots, w'^{(q)}, w'^{(n-s+q+1)}, \ldots, w'^{(n)}$ are parallel 1-forms. Let us define a connection Γ on M_n by

$$\Gamma_{kl}^{j} = \sum_{i} f_{i} \Gamma_{kl(i)}^{j}.$$

Then using that $\nabla_Y K = \sum_i f_i(\nabla_Y)_i K$ for an arbitrary tensor field K, where ∇_Y and $(\nabla_Y)_i$ are covariant derivatives with respect to the connections Γ and $\Gamma_{(i)}$ respectively, we obtain that $X'_{(1)}, \ldots, X'_{(r)}, w'^{(1)}, \ldots, w'^{(q)}, w'^{(n-s+q+1)}, \ldots, w'^{(n)}$ are parallel vector fields and 1-forms with respect to the connection Γ . So $X_{(1)}, \ldots, X_{(r)}$ and $w^{(1)}, \ldots, w^{(s)}$ are parallel vector fields and 1-forms with respect to the connection Γ . \square

In particular if s = 0 or r = 0 we can obtain the following two corollaries:

Corollary 1. Assume that M_n is a paracompact differentiable manifold and assume that $X_{(1)}, \ldots, X_{(r)}$ are linearly independent vector fields on M_n . There exists a linear connection on M_n such that $X_{(1)}, \ldots, X_{(r)}$ are parallel vector fields.

Corollary 2. Assume that M_n is a paracompact differentiable manifold and assume that $w^{(1)}, \ldots, w^{(s)}$ are linearly independent 1-forms on M_n . There exists a linear connection on M_n such that $w^{(1)}, \ldots, w^{(s)}$ are parallel 1-forms.

Suppose that $n+1=2^{4\alpha+\beta}(2s+1)$ where α and s are non-negative integer numbers and $\beta \in \{0,1,2,3\}$. Adams ([5]) has proved that the maximal number of linearly independent vector fields on S^n is equal to $k(n)=2^{\beta}+8\alpha-1$. Using this result and Corollary 1 we obtain

Corollary 3. S^n admits a linear connection and strictly parallel k(n)-plane, but it does not admit parallel k(n) + 1-plane for each linear connection on S^n .

REFERENCES

- [1] A. G. WALKER, On parallel fields of partially null vector spaces, Quart. J. of Math. (Oxford) (1) 20 (1949), 135-145.
- [2] Y.C.Wong, Fields of parallel planes in affinely connected spaces. Quart. J. of Math. (Oxford) (2) 4 (1953), 241-253.
- [3] S.Kobayashi and K.Nomizu, Foundations of differential geometry. Volume I, Interscience publishers, New York, 1963.
- [4] K.TRENČEVSKI, Spaces with flat linear connection, Prilozi, VII 1 (1986), 5-16.
- [5] J. F. Adams, Vector fields on spheres. Ann. Math., 75 (1962), 603-632.

Institute of Mathematics P.O.Box 162 Skopje MACEDONIA

Received 21.10.1986 Revised 20.05.1993