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ON A CLASS OF MULTIPLIER SEQUENCES

IVANKA M.KASANDROVA, MARGARITA D.KOSTOVA

ABSTRACT. In the paper are given some results about sequences {p.}g;o having
the property that for every polynomial ag 4+ a;z + - - - + an 2" with zeros in the unit
disc |z| < 1 the zeros of the polynosnial poao + p1812+ -+ -+ pinanz™ will be in the
disc |z| < 1 too.

Introduction. The theory of multipliers is primarily related to polynomial
transformations preserving some regions of distribution of their zeros. The main prob-
lem in this theory is as follows: What should the sequence of numbers {7}, be so
that for every polynomial ag + a;z + -+ - + a,2" with zeros in the region D, the zeros
of polynomial ypap + 71612 + * - + Y8, 2" will be in this region too.

The theory of multiplier sequences starts its development from Laguerre [3),
with the case D = R.

Definition 1 ([3],p.5). The infinite sequence {ax}32, is called an a - sequence
if for every polynomial ag+ a2+ - - -+ an 2" with only real zeras, the polynomial agag +
1812 + -+ -+ apa, 2™ has real zeros only.

Definition 2 ([3],p.8). Denote by L, the class of entire functions which are
polynomials having real, nonpositive zeros only, or limits of such polynomials in every
finite domain.

Polya and Schur ([3],p.16) established the following transcendental criterion
for a - sequences:

{ax}ig€a < E—z € L.
k=0

The case D = {|z| < 1} has been discussed by us in [2], where according to
Polya’s and Schur’s idea, algebraic criteria have been found for the respective multiplier
sequences and some elementary properties have been proved.
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Definition 3. Denote by K the class of the polynomials whose zeros lie in
the unit disc |2| < 1.

Definition 4 ([2]). The infinite sequence {ux}32, is called a p - sequence if
it transforms every polynomial p(z) = ag + @12+ - -+ + ap2™ from K into a polynomial
up(2) = poao + p1812 + + -+ + ppanz™ in the same class.

Definition 5. The finite sequence {ux}i_, 18 in M, if for every polynomial
P(2) from the class K of degree n the polynomial up(z) belongs to the same class.

2. Main results. In order to extend the scope of the applications of the u —
sequences, we shall prove some new properties.

n
Theorem 1. Let g(z) = Ebkz", b, # 0 be a polynomial such that all the

zeros of the polynomial ¢;(2) = E ( ————2* lie in the unit disc |z| < 1. Then for

)
every polynomial p(z) = Eakz y Gn # 0 the following inequality is valid
k=0

Z (g k!a,,b.,z") > Z (gakz") ,

where Zi(p(z)) is the number of the zeros of p(z) which lie in the unit disc.

Proof. We apply a corollary of Grace theorem established by Szegd([1], p. 143)
to the polynomials ¢;(z) and p(z). The zeros of the composed polynomial

r(z) = 2 klagbe2*
k=0

are of the form { = —kfv, where j,,5,,..., B, are the zeros of p(z) and z belongs to
the disc |z| < 1. From this it follows that the polynomial r(z) has at least as many
zeros in the disc |z| < 1 as p(2).

This completes the proof of the Theorem. O

Corollary 1. Ifp(z) € K, then r(z) € K.

Corollary 2. Ifp(z) = Ea.,z € K, then py(z) = Z 2 )
k

Let {ux}ieo be arbitrary real sequence and let us denote Apk = Pkg1 — Pk,
A%up = prsr — 24k + k-1, -y = 0. It is known [2] that if Aux > 0,k =0,1,2,.
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o > 0, then:
oo Kk
(a) {Ku}ezo € (b) {—n—} € M,.
(k) k=0
Now we shall note the following
Corollary 3. IfA%u,>0,k=0,1,2,..., uo > 0, then:

(a) {(k")?ur }oug € 15 (b) {‘(L:.—")} € My; (c) {K!'Aur} ey € 15 (d) {é(_l'“)_k} € M,.

k) ) k=0 k=0

The above corollary is a consequence of Theorem 1 and the following theorem
due to Berman [5): Let p(z) = aoz™ + a;2""! + --- + a, be a polynomial with real
coefficients and ag > 0. If A%a = ax4y1 —2ax+ak-1 20,k=0,1,2,...,n-1,a_, =0,
then the zeros of p(z) lie outside the unit disc.

Theorem 2. If {pr},, € 4y px # 0, k = 0,1,2,..., then |ux| < |pi41,
EIS10N 1 230
Proof. The following criterion for 1 — sequences is known [2]:

k
k .
{He}io € = yk(l)“—’Z(j)y,'z’EK, k=1,2,...

=0

Then also y,(:z,(z) = (k+ 1)/(pk + zpx41) € K. Consequently |uk| < |pe4]-

Theorem 3. If {ax},., € @ and |ax| < |akp1|, k = 0,1,2,..., then
(e o]

{a"}k=o EM.

Proof. It is known that if {ax}3>, € a, then either all ax have the same sign
or they have alternating signs ([3], p.5). So, we have

Case (a). Suppose that ax > 0, k = 0,1,2,.... Then taking into account
assumption 0 < ax < k41, ¥ = 0,1,2,... and using the Theorem of Graven and
Csordas [4], we conclude that all the zeros of the polynomials

yn(2) = z (:)a;,z", n=12,...

k=0

lie in the interval [—1,0]. It follows from the criterion for 4 — sequences that {a,,}:‘;oe
K.

Case (b). Suppose that ax < 0, k=0,1,2,.... Then we have 0 > ax > ak41,
k=0,1,2,.... It follows from the same Theorem of Graven and Csordas that for any
integer n > 1, yn(2) € K, i.e. {ax}i, € 4.
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Case (c). Suppose that (-1)*ax > 0, k = 0,1,2,.... As in the case (a) we
obtain that for any integer n > 1, the zeros of the polynomial

S0t (1)

lie in the interval [—1,0]. Then the zeros of y,(2),n = 1,2,...lie in [0, 1]. Consequently

Yn(2) € K and {ak}i2, € p.
Now we will show that u — sequences can be obtained from every a — sequence.

k
Corollary 4. Let {ax}2, € a and let gi(t) = z (.’:) ajt’.
=0
(a) If sign aix = signax4r, k = 0,1,2,..., then {g(to)}32, € p for each fized
to > 0; .
(b) If sign ax = —signak4r, k =0,1,2,..., then {gi(t0)}32, € p for each fized

to < 0;
Proof. We will consider only case (a). The proof of case (b) is analogous.
Suppose ax > 0, k =0,1,2,.... Let f(z) = %z".
k=0

We note that f(2) € Ly and €* f(zt) = 2 gl;c('t)z".

k=0
But e* f(ztg) € L, for a fixed to > 0. Therefore, by the transcendental criterion
for a - sequences, for each fixed to > 0, {gk(t0o)}52, € . It is evident that 0 < gi(to) <
gk+1(to). By Theorem 3 we have {gk(t0)}52, € -
In particular, when ax = 1, k =0,1,2,... and to = 1, we obtain

50,

=0

Theorem 4. The sequence {jx}32, € 4, pk # 0, k = 0,1,2,... if and only if
for every polynomial p(z) the following inequality is valid

Zi(up(2)) 2 Zi(p(2))-
Proof. Suppose that the above inequality holds. Let p(z), degp(z) = n be an

arbitrary polynomial from class K. Then Zx(up(z)) > n and since degup(z)) = n it
follows that up(z) € K., i.e. {ux}ie, € p-
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Conversely, let {ux}32, € 4, px #0, k =0,1,2,... and let

p(z) = iakzk, a, #0

k=0

be an arbitrary polynomial. Then the theorem of Szegd, when applied to polynomials

n

Yn(2z) and p(z) and the fact that y,(2) = Z (:) prz* € K show that the polynomial
k=0
up(z) has at least as many zeros in the unit disc as p(z).
Thus the proof of the Theorem is completed.

Theorem 5. For any polynomial p(z)

z (2 —1’5]—(—)) > Zu(p(2)),
=0

where n = degp(z).
n k k N
Proof. Let p(2) = Z axz*. Since {Z ( ) } € u. by Theorem 4 we have
k=0 k=0 J k=0
n k
e (2(5)]#) 2 20
k=0 1=0

But calcalation shows that
n k n c (s
k 3 p(d)
Z“" Z() z":ZZP_'(Z)
=0 =0 J 1=0 J:

Thus the conclusion holds.
It is evident that if p(z) € K, then E

=0

z p"’(l)
J.
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