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ON COMMUTATIVITY OF RINGS WITH CONSTRAINTS ON
SUBSETS

H.A.S.ABUJABAL, M. A.KHAN, M.S.KHAN

ABSTRACT. Let R be a ring with center Z(R), and let A(R) be an appropriate
subset of R. In this paper, it is shown that R is commutative if and only if for
every z,y € R, there exist integers k = k(z,y) > 0, m = m(z,y) > 1, and
n = n(z,y) > 0 such that [z, z"y — y™z*] = 0 and for each z € R either z € Z(R),
or there exits a polynomial f(t) € Z[t] such that z —z2f(z) € A(R), where A(R) is
a nil commutative subset of R. If R is a left or right s-unital ring, then the following
are equivalent: (i) R is commutative; (ii) For every z,y € R, there exist integers
k=k(z,y) >0, m=m(z,y) > 1, n = n(z,y) > 0 such that [z,z"y — y™z*] = 0
and for each z € R either z € Z(r) or there exits a polynomial f(t) € Z[t] such
that z—z?f(z) € A(R), where A(R) is a nil subset of R; (iii) For each y € R, there
exists an integer m = m(y) > 1 such that [z, z"y — y™z*] = 0 = [z, 2"y™ — y™ z¥]
for all z € R, where k£ > 0 and n > 0 are fixed non-negative integers. Our results
generalize some well-known commutativity theorems.

Introduction. There is a number of conditions each of which implies the
commutativity of certain rings. The equivalence of few such conditions to that of
commutativity of rings was established by Tominaga and Yaqub [17]. The list of these
equivalent conditions was further extended by these authors in [18].

The major purpose of this paper is to use the work of Tominaga and Yaqub
[17], Ashraf et al. [7] and Abujabal [4], for rings satisfying more general polynomial
identities. In fact, several commutativity theorems can be obtained as corollaries of
our results, for instance, [1, Theorem], [2, Theorem], [3, Theorem], [6, Theorem], [12,
Theorem], [14, Theorem], (15, Theorem] and [16, Theorem].

Throughout this paper, R js an associative ring not necessarily with unity 1.
Let Z(R) denote the center of R, N(R) the set of all nilpotent elements of R, C(R) the
commutator ideal of R, A(R) a non-empty subset of R, and V.(A(R)) the centralizer
of a subset A(R) of R. Z[t] stands for the totality of polynomials in t with coefficients
in Z, the ring of integers. For any z,y in R, we set as usual [z,y] = zy — yz.
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In the present paper, we consider the following properties:

(I — A(R)): For-each z € R, there exists a polynomial f(A)in Z[A] such that
z — z2f(z) € A(R).

(I'— A(R)): For each z € R, either z € Z(R), or there exists a polynomial f(A)
in Z[A] such that z — z2f(z) € A(R).

(IT — A(R)): For every a € A(R) and z € R, [[a,z],2] = 0.

(IIT): For every z,y € R, there exist integers k = k(z,y) > 0, m = m(z,y) > 1
and n = n(z,y) > 0 such that [z,z"y — y™z*] = 0.

(III): For every z,y € R, there exist integers k = k(z,y) > 1 and m =
m(z,y) > 1 such that [z,zy — y™z¥] = 0.

(IIT)": For every z,y € R, there exist integers m = m(z,y) > 1 and n =
n(z,y) > 1 such that [z,z"y — y™z] = 0.

(IV): For each y € R, there exists an integer m = m(y) > 1 such that [z,z"y
—y™z*] = [z,2z"y™ — y™ z*] = 0 for all z € R, where k > 0 and n > 0 are fixed
integers.

(IV): For each y € R, there exists an integer m = m(y) > 1 such that
[z,zy — y™2¥] = [z,zy™ — y™ z*] = 0 for all z € R, where k > 1 is a fixed positive
integer.

(IV)": For each y € R, there exists an integer m = m(y) > 1 such that
[z,z"y — y™z] = [z,2"y™ - y™ z¥] = 0 for all z € R, where n > 1 is a fixed positive
integer.

(V): For every z,y € R, there exist fixed integers k > 0,m > 1andn >0 such
that [z"y — y™zF,z] = 0.

The major purpose of this paper is to study the equivalence of the above listed
properties with reference to the commutativity of the ring under consideration.

2. Preliminary Results. In preparation for the proofs of our results, we first
collect a number of well-known concepts and results.

Definition 1. A ring R is called left (resp. right) s-unital if z € Rz (resp.
z € zR) for each z in R. Further, R is called s-unital if it is both left and right s-unital,
that is z € zR N Rz for all z in R.

Definition 2. If R is s-unital (resp. left or right), then for any finite subset F'
of R there exists an element e in R such that ez = ze = e (resp. ez = z or ze = z) for
all z in F. Such an element e is called the pseudo (resp. pseudo left or pseudo right)
identity of F in R.

" Definition 3. A ring R is said to be normal if every idempotent element in R
is in Z(R).

Lemma 1 ([13, Lemma 3]). Let R be a ring such that [z,[z,y]] = 0 for all z

and y in R. Then [z*,y] = kz*~1[z,y] for any positive integer k.

Lemma 2 ([5, Lemma 2]). Let R be a ring with unity 1,-and let z and y be
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elements of R. If kz™([z,y] = 0 and k(z + 1)™[z,y] = 0 for some integers m > 1 and
k > 1, then necessarily k(z,y] = 0.

Lemma 3 ([17, Lemma 1]).

(i) Let @ be a ring homomorphism of R onto R*. If R satisfies (I' — A(R)),
(I — A(R)) or (II — A(R)), then R* satisfies (I — ®(A(R))), (I' — ®(A(R))) or
(IT — ®(A(R))) respectively.

(ii) If A(R) is commutative and R satisfies (I' — A(R)), then N(R) is com-
mutative nil ideal of R containing C(R) and is contained in V (A(R)). In particular,
(N(R))’ C Z(R).

(iii) If there ezists a commutative subset A(R) of N(R) for which R satisfies
(I"— A(R)) and (II — A(R)), then R is commutative.

Lemma 4 ([18,Lemma]). Let R be a left (resp. right) s-unital ring. If for each
pair of elements z and y in R there ezists a positive integer k = k(z,y) and an element
e = e(z,y) of R such that z*e = z* and y*e = y* (resp. ez* = z* and ey* = y*), then
R 1is an s-unital ring.

Lemma QK ([15,Lemma 3]). Let R be a ring with unity, and let k and m be
natural number. If (1 - y*)z = 0, then (1 — y*™)z = 0 for all z,y € R.

Theorem K ([11,Theorem)). Let f be a polynomial in n non-commuting inde-
terminates 21,23, ...,Z, with relatively prime integral coefficients. Then the following
are equivalent:

(a) Every ring satisfying the polynomial identity f = 0 has a nil commutator
ideal.

(b) Every semi-prime ring satisfying f = 0 is commutative.

(c) For every prime p,(GF(p))2, the ring of 2 X 2 matrices over the Galois field
GF(p), fails to satisfy f = 0.

Now, let P be a ring property. If P is inherited by every subring and every
homomorphic image, then P is called an h -property. More weakly, if P is inherited
by every finitely generated subring and every natural homomorphic image modulo the
annihilator of a central element, then P is called an H-property. A ring property P
such that a ring R has the property P if only if all its finitely generated subrings have
p, is called an F-property.

Proposition 1 ([10, Proposition 1]). Let P be an H-property, and let P' be
an F-property. If every ring R with unity I having the property P has the property P’,
then every s-unital ring having P has P’.

The following theorems are due to Herstein.

Theorem H, ([9, Theorem 3]). If R is a ring with center Z(R) such that for

every a € R there ezists a polynomial p,(t) such that a — a’p,(t) € Z(R), then R is
commutative.
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Theorem H, ([8, Theorem 19]). Let R be a ring and let n = n(z) > 1 be an
integer depending on z. If 2" — z € Z(R) for all z € R, then R is commutative.

Main Results. We obtained the following results.

Theorem 1. The following statements are equivalent:
(i) R is commutative.
(ii) R satisfies (III) and (I’ — A(R)) for a commutative subset A(R) of N(R).

Theorem 2. Let R be a left or right s-unital ring. Then the following
statements are equivalent:

(i) R is commutative.

(ii) R satisfies (III) and there ezists a subset A(R) of N(R) for which R satisfies
(I'- A(R)).

(iii) R satisfies (IV).

The following lemmas are essential in proving our theorems.

Lemma 5. Letk =k(z,y)> 1, m =m(z,y) > 1 and n=n(z,y) > 1. IfR
is associative ring satisfying [z"y — y™z*,z]) = 0 for all z,y € R, then R is normal.

Proof. Let e be an idempotent element in R and let z € R. Then there
exist integers n = n(e,e +ex(l —e)) > 1, m = m(e,e + ez(1 —¢€)) > 1 and k =
k(e,e + ex(1 —e)) > 1 such that for z = e and y = e + ez(1 — €), we have [e,e™(e,e +
ez(1 —e)) — (e + ez(1 — €))™e*] = 0. So, e"*1(e + ez(1 — €)) — e(e + ez(1 — e))™ek —
e"(e + ez(1 — e))e + (e + ez(1 — e))™ek+! = 0. As e¥ = e for all k > 1, we get
e"t1(e+ez(1—e))—e"(e+ez(l1—e))e = 0, and e"t2 e +2z(1—¢)—e"t! —e"Hlz(1-€)e =
0. Thus ez(1 —e)) — ez(e —e?) = 0. Hence, ez(1 —€) = 0. Similarly, we can prove that
(1 — e)ze = 0. Therefore, ez = ze for all z € R. Thus R is normal.

Lemma 6. Let R be a ring with unity 1 satisfying (III). Then N(R) C Z(R).

Proof. Let a € N(R) and z € R. Then, we may assume that there are
integers m; = m(z,a) > 1, n; = n(z,a) > 0 and k; = k(z,a) > 1 such that z™ [z, q]
= [z,a™]z* for all z € R. Now, consider m; = m(z,a™) > 1, n3 = n(z,a™) > 1
and k; = k(z,a™) > 1. Then as above we can write z™[z,a™] = [z, (a™ )™ ]z
= [z,a™™2]z* for all z € R. So z™1™[z,a] = [z,a™™2]|z*1 k2 for all z € R. Thus
for any positive integer ¢, we have z™ M2 ++n¢ [z g] = [z, g™ ™a2-me|ghithattke for a]]
z € R. Asais nilpotent, a™ ™2™t = ( for sufficiently large ¢. Hence, z™+"2++n¢[z_q]
=0for all z € R. Let n'(z) = ny + ng + - -+ + ny. So 2" (®)[z,a] = 0 for all z € R. Set
n' = max{n’(z),n(z + 1)}. Thus 2"'[z,a] = 0 = (z + 1)"'[z,a] for all z € R which by
Lemma 2 yields [z,a] = 0 for all z € R. Hence a € Z(R).

From Theorem H; we have the following.

Theorem 3. Let R be a ring with unity 1 satisfying (III) and (I’ — A(R))for
a subset A(R) of N(R). Then R is commutative.
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Lemma 7. Let R be a ring with unity 1 satisfying (IV). Then C(R) C Z(R).

Proof. Let n and k be fixed positive integers. Then for any y € R there exists
an integer m = m(y) > 1 such that the polynomial identities in (IV) can be rewritten

as
(1) z"[z,y] = [z,y™]z* forall z € R,
and

(2) 2"[z,y™] = [z,y™ Jz* for all z € R.

Now, we replacing z by z + 1 in (1), we get
(z 4+ 1)z, y]z* = [z,y™](1 + z)*z* = z"[z,y](1 + z)* for all z,y € R.

So, by Theorem K, we observe that C(R) C N(R), since z = ej3 = ( 8 ; )v

and y = ey + €31 = ( J ) fail to satisfy the identity

10
(z +1)"[z, y)e* - 2"[z,4)(1 + 2)* = 0.
in (GF(p)),- Hence, by Lemma 6, C(R) C N(R) C Z(R).

Lemma 8. Let R be an associative ring with unity 1 satisfying (IV). Then R
18 commutative.

Proof. For n = 0 = k, we get [z,y] = [z,y™] for all z,y € R. So the
commutativity of R follows from Theorem H;. Again for n = 1 and k£ = 1 we have
z([z,y] = [z,y™]z for all z,y € R. Replacing z by z + 1, we obtain [z,y — y™] = 0 for
all z,y € R. So, R is commutativity of R.

Now, we suppose that n > 1 and k > 1. If k = n, then z"[z,y] = [z,y™]z",
and by Lemma 7, we get z"[z,y] = z"[z,y™]. Therefore, z"[z,y — y™] = 0 and
(z + 1)*[z,y — y™] for all z,y € R. By Lemma 1, we have [z,y — y™] = 0 for all
z,y € R. Therefore, R is commutative by Theorem H;. Without loss of generality, we
suppose that n > k. Let t = 2"t! — 2¥+1 Then t > 0, for n > k. By using (1), we see
that

tz"[z,y] = (2"+l -2k )z"[z,y] = 2"+lz"[z) yl - 2k+lz"[z, v]

= (22)"((22),4] - [(22),y™)(22)" = 0.
Hence by Lemma 2, t[z,y] = 0. Again, Lemma 1 and Lemma 7 together imply
that [z,y] = tz*~![z,y] = 0 for all z and y in R. So, z' € Z(R) for all z € R.
Further, using (1), (2) and the fact that C(R) C Z(R) by Lemma 7, we see that
1=y )z, 9l * = [z, yl -y V[, yJa™* = [z,y™]2"—y "V [z, )2

— I”[.’:,ym] _ mym—ly(m-l)ﬂ[z,y]zn — :c"[::,y"'] _ mym(m—l)zn[z’y]
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— zn[z’ym] _ mym(m—l)[x’ym]zk - zn[z,ym] _ [z’ y"‘2]zk = 0.

This implies that (1 — y(™=1?)[z,y]z2*~* = 0 for all z,y € R. Replacing z by
z + 1 and using Lemma 2, we get

(3) (1- y(""l)z)[::,y] =0 forall z,y € R.

Since, z' € Z(R), for all z € R, then by (3), we get
[z,y — g™~V +1] = (1 - ytm-1?)[z, 4] = 0 forall z,y€ R.

Thus y — y!(m-1?+1 € Z(R), for m = m(y) > 1. Hence, R is commutative by
Theorem H,.

Now, we are in a position to prove our results.

Proof of Theorem 1. It is straightforward to see that a commutative ring
R satisfies the condition given in the theorem.

Now, if R has unity 1, then the result follows from Theorem 3. So we suppose
that R does not contain unity 1. In view of Lemma 3 (i), R can be assumed to be a
subdirectly irreducible ring without unity 1. Let z € R\ Z(R) be an arbitrary element.
By hypothesis (I’ — A(R)), there exists an element y €< z >, the subring generated by
z, and a positive integer m such that z™ = z™+!y. Clearly, e = z™y™ is idempotent
with z™ = z™e, and also e is a central element by Lemma 5. Since R has no identity,
e = 0. Again by Lemma 3 (ii), z is in the commutative ideal N(R) and [z,[z,a]] = 0
for all a € A(R). Hence R is commutative by Lemma 3 (iii). This completes the proof.

Proof of Theorem 2. Every commutative left or right s-unital ring satisfies
(ii) and (iii).

If R satisfies (ii), then we claim that R is s-unital ring. Let R be a right s-unital
ring, and let z,y € R. Then there exists an element e € R such that ze = z and ye = y.
Also, there are integers m = m(z,y) > 1, n = n(z,y) > 0 and k = k(z,y) > 0 such that
emzntktl = [z, z"e —e™zK] = ™K+, Similarly, if m’ = m/(y,e) > 1,n' = n'(y,e) > 0

and k' = k/(y,e) > 0 are integers, then we have
em'yn’+k'+l - yn'+k’+1.

Hence,
U ' + U '
eM g tn +k+k'+2 _ zn-rk+n +k +2’
and
em'yn+k+n’+k’+2 — yn+k+n'+k’+2.
So
U ' i) U ’
emm zn-}-n +k+x'42 = $"+" +k+k'42
and

emm' yn+n'+k+k’+2 — yn+n'+k+k'+2 )

Then by Lemma 4, R is an s-unital ring.
Now, suppose that R is a left s-unital. Let z and y be arbitrary elements of
R. Then we can find an element e € R such that ez = z and ey = y. Further,
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there are integers m = m(z e) > 1, n = n(z,e) > 0 and k = k(z,e) > 0 such that
g"tle = [z,z"% — emzk] + 22 = :c"'” Similarly, y"t'e = y"t!. So by Lemma 4, R is
s-unital.
According to Proposition 1, we may assume that R has unity 1. Hence, R is
commutative by Theorem 3. Thus (ii) implies (i).
In case R satisfies (iii), then as argued above, we may assume that R has unity
1. Hence again by Lemma 8, R is commutative.

Corollary 1 ([7, Theorem 1]). A ring R is commutative if and only if R
satisfies (IIT) and (I'-A(R)) for a commutative subset A(R) of N(R).

Corollary 2 ([17, Theorem 1]). A ring R is commutative if and only if R
satisfies (II1)"” and (I’-A(R)) for a commutative subset A(R) of N(R).

Corollary 3 ([7, Theorem 2]). If R is a left or right s-unital ring, then the
following statements are equivalent:

(i) R is commutative.

(ii) R satisfies (II1)" and there ezists a subset A(R) of N(R) for which R satisfies
(I' - A(R)).

(iii) R satisfies (IV)'.

Corollary 4 ([17, Theorem 2]). If R is a left or right s-unital ring, then the
following statements are equivalent:

(i) R is commutative.

(ii) R satisfies (II1)" and there ezists a subset A(R) of N(R) for which R satisfies
(I' - A(R)).

(iii) R satisfies (IV)".

Corollary 5 ([4, Theorem 1]). If R is a left or right c-unital ring satisfying
(V), then R is commutative.

Corollary 6 ([4, Theorem]). Let m,n be fized non-negative integers. Suppose
that R satisfies the polynomial identity z"[z,y] = [z,y™] for all z,y € R.

(a) If R is left s-unital, then R is commutative ezcept the case (m,n) = (1,0).

(b) If R is right s-unital, then R is commutative ezcept the case (m,n) = (1,0);
and alsom =0, n > 0.

Example 1. Let R be an algebra over GF(2) of dimension 4 with {1,a,b,c}

as a basis which also’satisfies the multiplication rule.
a’=14a,ab=c,ca=b,ac=ba=>b+c, and bc = cb=b% = ¢? = 0.

Then R becomes a non-commutative ring whose nilpotent elements commute
among themselves. Let A(R) N (R) which is a commutative subset of R. Then for
any z € R, we see that z? — 2% = 2? — 22(2?) € N(R). Thus R satisfies (I’ — A(R)).
So, R fails to be commutative if it does not satisfy (I11).
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Example 2. Theorem 1 need not be true if we drop the condition that A(R)
is commutative. For this, consider

0 a b
R={| 0 0 ¢ |:a,b,ce GF(2)}.
000

Then R is a nilpotent ring of indez 8 and also N(R) = R. Further, R satis-
fies (III). However, with A(R) = N(R), R also satisfies (I' — A(R)). But R is not
commutative. )

Remark. Example 2 also shows that Theorem 2 can not be extended for
arbitrary rings.

Example 3. This ezample shows that both conditions (III) and (I' — A(R))
in Theorem 2 (ii) are essential for the ring R with unity I to be commutative. Let

0 b ¢ 1 00
R={al+5:5S5=| 0 0 d | andI=| 0 1 0 |:a,bec,deGF(2)}.
000 0 0 1

Then, it is easy to check that N(R) = {S}, and R does not satisfy (II1I). Let
A(R) = N(R). Then for all z € R, we have z — z2f(z) € A(R). However, R is not
commutative.
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