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SUBDISTRIBUTIVE DE MORGAN TRIPLETS

C. ALSINA, G. MAYOR, M.S. TOMAS, J. TORRENS

ABSTRACT. We study and characterize De Morgan triplets that verify the sub-
distributive property.

1. Introduction. Since the introduction of Fuzzy Sets Theory by Zadeh [6] in
1965, many authors have studied possible logical connectives to substitute Min , Max
and 1 — j. In this context, t-norms and t-conorms have shown to be useful tools and
the structure of De Morgan triplet is now frequently used in Fuzzy Set Theory [4].

On the other hand, it is well known that the lattice structure is lost when we
use t-norms and t-conorms. Also the distributivity condition is only satisfied by De
Morgan triplets of type (Min,Max, N), where N is any strong negation. So, in order
to provide other possibilities, we want to study conditions weaker than distributivity.
In this way, note that in lattice theory, distributivity is given only by one inequality
since the other [z A (yV 2) > (z Ay) V(2 A z)] is always satisfied.

Thus, in a De Morgan triplet we can also consider both inequalities separately.
In this paper we study and characterize De Morgan triplets that verify one of the
distributivity inequalities.

2. Preliminary notions. We begin with the following basic definitions and
results

Definition 2.1. A t-norm is a two place function T from [0,1] x [0,1] into
[0,1]) which is associative, commutative, 1 is a unit and T is non-decreasing in each
place.

Definition 2.2. A t-norm T is Archimedean if it is continuous and T'(z,z) <
z for all z in (0,1).

Definition 2.3. A t-norm T is strict if it is continuous and strictly increasing
on (0,12
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Definition 2.4. A t-conorm is a two place function S from [0,1] x [0,1] into
[0,1) which is associative, commutative, 0 is a unit and S is non-decreasing in each
place. Moreover S is said to be Archimedean if it is continuous and S(z,z) > z for all
z in (0,1), and strict if it is continuous and strictly increasing on [0,1)%.

By the representation theorem for the solutions of the associativity equation
(see [1]) we have that any Archimedean t-norm can be represented in the form

(1) T(z,y) = 1 (#(z) + t(y)) for all z,y € [0,1],

where t is a continuous strictly decreasing function from [0, 1] into [0, 4+00] such that
t(1) = 0 and tI-1 is the pseudo-inverse of ¢ defined by

tl-1)(z) = t~(z) whenever 0 < z < t(0) and ti='(z) = 0if (0) < z.

If t(0) = 400, then T is strict and t{~1) = ¢!

This function t is called an additive generator of 7 and it is unique up to
a positive multiplicative constant. If T is a non-strict Archimedean {-norm, we can
suppose ¢(0) = 1 and then, the zero-set of T, Z(T) = {(z,y) € [0,1] | T(z,y) = 0}, is

Z(T) = {(z,¥) € [0,1] x [0,1] | y < Nr(2)},
where N7 is the strong negation given by
Nr(z) =t"'(1-t(z)) forall z € [0,1].

Similarly to the case of t-norms, any Archimedean t-conorm can be represented
in the form

(1) S(z,y) = st"U(s(z) + s(y)) forall z,y € [0,1]

with similar notations as above but s being a continuous strictly increasing function
from [0,1] into [0,+00] such that s(0) = 0. If s(1) = +oo, then § is strict and
sl=11 = =1 As before, this function s is called an additive generator of S.

Definition 2.5. Let J be a finite or countable set. Consider a collection
{T; | i€ J} of t-norms and a collection {(a;,b;) | i € J} of disjoint intervals to the
intervals {(a;,b;) | i € J} the following t-norm

z-a; y-—a
b; —a;’ b; — a;

a; + (bi — a;)T; ( ) whenever (z,y) € (aj, b;)?,

T(z,y) =

Min (z,y) otherwise.

The following theorem gives us a general classification of continuous t-norms.
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Theorem 2.1. Let T be a continuos t-norm. Then T s Archimedean,
T = Min or T is an ordinal sum of Archimedean t-norms.

Definition 2.6. A strong negation is an involutive and decreasing function
from [0, 1] into [0, 1].

Definition 2.7. (7,S,N) is a De Morgan triplet if T is a t-norm, N is a
strong negation and S is the t-conorm N-dual of T (i.e. S(z,y) = N(T(N(z),N(y)))
for all z,y in [0,1]).

3. Subdistributive De Morgan triplets.

First, if we consider in a De Morgan triplet the inequality corresponding to
zA(yVz)>(zAy)V(zAz) that we have in lattice theory we obtain the following
result:

Proposition 3.1. Let (T,5,N) be a De Morgan tripet verifying
(2) T(z,S(y,2)) > S(T(z,y),T(z,2)) forall z,y,z in [0,1]

then T = Min and S = Max.
Proof. Taking y = z = 1 in (2), we obtain

z=1T(z,501,1)) > S(T(z,1),T(z,y)) = S(z,z) > Max(z,z) = z,

i.e. S(z,z) =z for all z in [0,1]. Consequently S = Max and by duality 7' = Min.
From this result, it seems quite natural to give the following

Definition 3.1. A De Morgan triplet (T, S, N) is said to be subdistributive if
it verifies,

(3) T(z,5(y,2)) < $(T(z,y),T(z,2)) forall z,y,z€[0,1].

There are a lot of subdistributive De Morgan triplets as it is shown in the
following examples:

Examples 3.1. It is easy to see that the following De Morgan triplets are

subdistributive,

1. If we represent the t-form product by [], and its (1 — j)-dual by []*, then
the De Morgan triplet ([T,]]", 1 — 7) is subdistributive.

2. Let N be a strong negation with fixed point s and let 77 be any t-norm.
Consider the t-norm 7" given by the ordinal sum of only T’ with respect to the interval
[0, 5], represented in Figure 1. Let S’ be the N-dual of 7’ and S the N-dual of T,
represented in Figure 2. Then, the De Morgan triplet (7', 5, N) is subdistributive.
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Note that in the previous examples, there are no De Morgan triplets (7,5, N)
with 7 being a non-strict Archimedean ¢t-norm. The following theorem shows that it is
not by chance.

Theorem 3.1. Let (T,S,N) be a subdistributive De Morgan triplet. If T is
an Archimedean t-norm, then T is strict.

Proof. Suppose that T is a non-strict Archimedean t-norm. Then there is a
strong negation N7 such that T(z,y) = 0 if and only if y < N7(z). Now, let s be the
fixed point of N7 and put z = y = z = s in (3). We obtain

T(s,S(s,s)) < S(T(s,3),T(s,s)) =0.

i.e., §(s,s) < s and consequently S(s,s) = s, and therefore T'(s,s) = s which is a
contradiction.

Thus, if we want to study Archimedean subdistributive De Morgan triplets, we
can reduce our research to the strict case. In this direction, we have the following.

Theorem 3.2. Let(T,S,N) be a De Morgan triplet where T is a strict t-norm
and let t be an additive generator of T. Consider the involution on [0,+0c] defined
by f = tNt™! and let F : [0,+00)? — [0,+00)] be the function given by F(z,y) =
f(f(z)+ f(y)). Then, (T, S, N) is subdistributive if and only if

(4) Fz+y,z+2)<z+ F(y,z) forallz,y,z in [0, +0o0].

Proof. We have by (1) T'(z, S(y,2)) < S(T(=,y),T(z,2)) is equivalent to the
inequality

t71(t(z) + tNt(tN(y) + tN(2))) < Nt (Nt~ (t(z) + t(y)) + Nt (¢(z) + t(2))).
By changing t(z) = u, t(y) = v, t(z) = w, the above inequality holds if and
only if
u+ f(f(v) + f(w)) 2 f(f(u+v)+ f(u+w)) forall u,v,w in [0,+o00],

where f is precisely defined by f = tNt~!. Finally, if we consider F(z,y) = f(f(z) +
f(y)) then the result follows directly.

Remark 3.1. Note that, in the hypothesis of the previous theorem, inequality
(4) is equivalent to
F(z,y+2) < F(z,y) + F(z,2),

i.e., the function F' is subadditive in each variable. To see that, note that (4) is
equivalent to

f(f(z+y)+ f(z +2) <z + f(f(y) + f(2)) = f(f(2)) + f(f(¥) + f(2)) <=
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flz+y)+ f(z+2) > f(f(f(z) + f(f(y) + f(2))) = F(f(2), f(v) + f(2)) <=
(by taking z = f(u)ay= f(v),z: f(w))
f(f(w)+ f(0) + f(f(w) + f(w)) 2 F(u,v + w), ie. F(u,v) + F(u,w) 2 F(u,v + w).

Remark 3.2. A geometrical interpretation of inequality (4) is the following:
If we consider all the sections of the surface z = F(z,y) by parallel planes to z = y,
then all the secants of these sections have a slope less than or equal to 1/v/2.

Remark 3.3. Let us assume that f is a continious involution on [0, 4+oc] such

that the function F(z,y) = f(f(z)+ f(y)) satisfies condition (4) and also, let T be any
strict t-norm and t an additive generator of T. Then taking N = t~! ft we obtain a
strong negation on [0, 1], in such a way that (7,5, N) is a subdistributive De Morgan
triplet, where S denotes the N-dual of T. In order to illustrate this fact, first let us
give some examples.

Examples 3.2. a) Consider for any nonzero real number k, a function f given
by fi(z) = k/z. Then for all k£ # 0 we have,

k
Fi(z,y) = fi(fu(z) + fiu(y)) = k/z+k/y - z?y'

Now a simple computation shows that F verifies condition (4).

b) Also we have already seen that (][], [[",1—7) is a subdistributive De Morgan

triplet. Hence, we have
f(z)=tNt"'(z) = —In(1 - e7)
and we obtain a function
F(z,y) = f(f(z) + f(¥)) = ~In(e™™ + €7V — e"*V))

which clearly satisfies (4).
From these examples we can present many other subdistributive triplets by

using Remark 3.3.

Theorem 3.3. Let T be any strict t-norm and t an additive generator of T.
Then

a) There erists a family of strong negations (Ni) with k # 0, such that
(T, Sk, Ni) are subdistributive De Morgan triplets.

b) Taking N(z) = t~'(~In(1 — e~))) and S(z,y) = N(T(N(z),N(y))) we
obtain that (T, S, N) is a subdistributive De Morgan triplet.
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Proof. Note that from Remark 3.3, b) is clear and a) follows by considering
the negations:
Ni(z) = t7!(k/t(z)) for all z in [0,1].

From these results, note that there exists a strong relation between De Morgan triplets
(T, S,N) with T strict and their associate functions F defined ftom f = ¢t~ Nt. Thus,
our interest now is to deal with functions

(5) F(zvy) = f(f(z)+ f(y)) for all z,y in [01 +w]

where f is a strictly decreasing continuous involution on [0,+00]. We can present first
results in the differentiable case.

Theorem 3.4. Let f : [0,+00] — [0, +0c] be a strictly decreasing function such
that f(0) = 400 and f? = 1d. Suppose also that f is differentiable on (0,+00). If F is
defined by (5), we see that F verifies (4) if and only if 1/ f' is subadditive.

Proof. First note that since f is an involution, f’ does not vanish and con-
sequently 1/f' take no infinite values on the interval (0,400). Now, suppose that
F verifies (4). Let z,y be two fixed elements of (0,+00) and consider the function
h : [0, 400] — [0,+00) defined by h(2) = F(z + z,y + z). We have h(z) — h(0) < z and
hence A'(0) < 1, i.e.

! !
woy= L@ +FW)
O =7 =

If we repeat this reasoning for all z,y > 0 we obtain (since f' < 0)
f'(z)+ f'(y) > f'(F(z,y)) and by changing u = f(z) and v = f(y)

11
(v) = fiutv)

f'(f(w) + f'(f(v)) > f'(f(u+v)) which is equivalent to f’(lu) - 7
Conversely, if 1/f’ is subadditive it verifies

flz+2)+ f(y+2)
f(F(z + 2,y +2))

which is equivalent to h’(z) < 1 for all z > 0. Then, there exists ¢, in (0, z) such that

<1 forall z,y>0 andall 2> 0,

F(z + 2,9+ 2) - F(z,y) = h(z) - h(0) = K(c;)z < z

and so F verifies (4).

Corollary 3.1. Under the same assumptions of the above theorem, the fol-
lowing conditions are equivalent:

a) F(z,y) = f(f(z) + f(y)) verifies (4).

b) f'o f 1is subadditive.
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c) Dy F(z,y) <1 forall z,y > 0 (where Dy, stands for directional
derivative in the direction-of the vector (1,1)).

On the other hand, if f is any strictly decreasing involution on [0, +00], by tak-
ing s(z) = f(—In(z)) we can associate to F, the strict t-conorm S additively generated
by s. Then we have the following theorem whose proof is immediate.

Theorem 3.5. Let f be a strictly decreasing involution on [0, +00]. Consider
the function F(z,y) = f(f(z)+ f(y)). Then F verifies (4) if and only if S satisfies,

(6) S(zz,yz) > z S(z,y) forallz,y,z in[0,1].

In order to present some results on S which will give us new information about
f, we give one more definition (see [2] and [3]).

Definition 3.2. A function T : [0,1]? — [0,1] is said to be totally negative of
order 2 if for all z, < x4 and y; < y, we have

T(z1,51) T(z1,9%2)
T(z2,91) T(z2,%2) | ~

Theorem 3.8. Let S be a strict t-conorm with additive generator s, satisfying
(6). Then:

a) If s is a continuous differentiable function with derivative different from
zero and such that

s'(h)
SS(h)
(i.e. f(—In(z)) is subadditive).

b) S is totally negative of order 2 (in particular, s(e~*) = f(z) is convez).
c) If s is a differentiable function with derivative different from zero and such

limy_o 1, then s 1is subadditive

that

s'(zh)
S(h)

limy_0 <1, then s isconvez (i.e. f+ f isincreasing).
Proof. a) From condition (6) we have "

S(zh,yh)
h

z8'(zh) + ys'(yh) _
8(S(zh,yh))

S(Z, y) < limh—oo = umh—oo z+y,

which proves that s(z) = f(—In(z)) is subadditive.
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b) Again from (6) we obtain S(z,yz) > S(zz,yz) > z S(z,y) and so, S is
totally negative of order 2. Consequently s(e~*) = f(z) is convex. The proof of these
results is essentially the same as that for the case of totally positive strict t-norms given
in [2] (Theorem 3.1.).

c) By putting g(z) = s(z s~!(z)) we have that condition (6) is equivalent to
the subadditivity of ¢ and then,

9(z+y)—9(z)  9(v)

- y y

Now, by taking limit when y — 0,

s'(zs7(2)) g(zs7'(y)

? 9 1(2)) () S

Thus, s’(zz)/s'(z) <1,i.e. ¢ isincreasing and s is convex (which is equivalent to
f'+ f increasing).

In the last theorem we have proved that if the function F(z,y) = f(f(z)+ f(v))
verifies (4), then f must be convex. In other words, if (T, 5, N) is a subdistributive
De Morgan triplet with T strict, then the function given by f = t"!Nt must be
convex. To finish this work, we present the last example proving that the converse of
this fact is not true.

= ¢/z) < tim 22 — tim ¢/(y) = lm 2

Example 3.3. Let a < 1 be the unique solution of equation z = —In(z) and
consider the function f defined by,

ln(:c) whenever z € [0,a]
whenever z > a.

@ =4,

we trivially have that f is a strictly decreasing, continuous involution on [0, +00] and
convex in [0,a) U (@, +00). To check that f is also convex at z = a , note that the
left derivative of f at point a does not surpass the right one.

Thus f is convex in [0,+00) but F(z,y) = f(f(z) + f(y)) does not verify (4)
since by taking the values y =2 =9a/10 and z = a/10, we have

F(z +y,2+ z) — F(y,z) = F(a,a) — F(9a/10,9a/10) =
= f(2f(a)) - f(2f(9a/10)) = f(2a) — f(~2 In(9a/10)) =
= e~20 _ 2n(9a/10) _ 42 _ (94/10)? = 194?/100 > a/10 = z

where the inequality holds because a > 10/19.
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Max s
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. Min : Max
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s s
Figure 1. Figure 2.
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