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ON K-CONTACT MANIFOLDS

N. GUHA, U.C. DE

ABSTRACT. A type of K-contact manifold with characteristic vector field £ be-
longing to the k-nullity distribution satisfying the condition R(¢,Y).C = 0 is inves-
tigated, where R is the curvature transformation and C is the conformal curvature
tensor.

1. Introduction. In this paper we consider a K-contact manifold M?™*! with
characteristic vector field ¢ belonging to the k-nullity distribution. In a recent paper
[1) M. C. Chaki and M.Tarafdar proved that if in a Sasakian manifold M™ (n > 3)
the relation R(X,Y).C = 0 holds, where R(X,Y) is considered as a derivation of
tensor algebra at each point of the manifold for tangent vectors and C is the conformal
curvature tensor, then the manifold is locally isometric with a unit sphere $™(1). In
this paper we have generalised the rezult of Chaki and Tarafdar by taking the weaker
hypothesis R(£,Y).C = 0 instead of R(X,Y).C = 0 in a K-contact manifold.

2. K-contact manifolds. A (2m + 1)-dimensional C® manifold M?™*1 is
said to be a contact manifold if it carries a global 1-form 7 such that n A (dn)™ # 0.
For a given contact form 7 it is well known that there exists a unique vector field {
(called the characteristic vector field) on M such that n(¢) = 1 and dn(§,X) = 0. A
Riemannian metric g is said to be an associated metric if there exists a tensor field ®
of type (1,1) such that dn(X,Y) = g(X,®Y),n(X) = ¢(X,£) and & = -1 + 9 ®¢.
The structure (®,£,7,9) on M?™*1 is called a contact metric structure and M?™*1 is
called a contact metric manifold [2].

Given a contact metric structure (®,£,7,g) we define a tensor field h by h =
1(L¢®) where £ denotes the Lie differentiation. h is a symmetric operator which anti-
commutes with & and hence if A is an eigenvalue of h with eigenvector z, then —A is
also an eigenvalue of the eigenvector ®z. Clearly h{ = 0 and it is easy to see that { is
a killing vector field with respect to g if h = 0.
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A contact metric manifold for which £ is a killing vector field is called a K-
contact manifold [2], [3]. A -K-contact Riemannian manifold is called Sasakian [2] if

(2.1) (Vx®)(Y) = g(X,Y)§ - n(Y)X

hold, where the operator of covariant differentiation with respect to g is denoted by V.
The k-nullity distribution [4] of a Riemannian manifold for a real number k is
a ditribution
N(k):z — N(k)=

2.2
22 = {z € TuM : R(X,Y)Z = k(g(Y, 2)X — 9(X,2)Y),X,Y € T.M}.

Thus if £ belongs to the k-nullity distribution, then we get
(2.3) R(X,Y)E = k(g(Y,6)X — ¢(X,€)Y) = k[n(Y)X — n(X)Y]

From (2.2) it is clear that if kK = 1, then the manifold becomes a Sasakian one.
A Sasakian manifold is K-contact but the converse is not true in general. How-
ever a 3-dimensional K-contact manifold is Sasakian.

3. Preliminaries. In a K-contact Rimannian manifold the following relations
hold: (3], [5] :

(3.1) ®(¢) =0,

(3.2) n(§) =1,

(3.3) @2z = —z + n(X)E,

(3.4) 9(®X,®Y) = g(X,Y) — n(X)n(Y),
(3.5) 9(X,§) = n(X),

(3.6) Vxé = -9X,

(3.7 s(X,€) = (n — 1n(X),

(38) 9(R(&, X)Y,€) = 9(X,Y) = n(X)n(Y),
(3.9) R(&, X)) = - X + n(X)K,

(3.10) (Vx®)(Y) = R(§, X)Y.

The above formulas will be used in the next section.
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4. K-contact manifold with the characteristic vector field { belonging
to the k-nullity distribution.
If £ belongs to the k-nullity distribution, then-

(4.1) R(X,Y)§ = k[g(Y,£)X — g(X,£)Y] = k[n(Y)X — n(X)Y].
Putting X = £ in (4.1) by using (3.2) we get
(4.2) R(§,Y)E = k[n(Y)§ - Y.
If possible, let us suppose that k = 0. Then form (4.2), (3.9) and (3.3) we get
(4.3) ®’X =0,

which is a contardiction. Thus we can state the following Theorem:

Theorem 1. In a K-contact manifold the real number k for the k-nullity
distribution cannot be zero.

5. K-contact manifold with R({, X).C = 0.
We have for the conformal curvature tensor C

C(X,Y)Z = R(X,Y)Z - ﬁ[g(y, Z)QX - g(X,Z)QY + S(Y,2)X - S(X,2)Y]

(5.1) +(n—_T)T;_—2)[9(Y»Z)X—9(X,Z)Y]

where @ is the symmetric endomorphism of the tangent space at each point correspond-
ing to the Ricci tensor S [6], i.e.,

(5.2) 9(QX,Y) = §(X,Y).
Hence
n(C(X,Y)Z) =g(C(X,Y)Z,£)=n(R(X,Y)Z)

r n
(5.3) +[(n -H(n-2) n

2 lla(¥, Z)n(X) - g(X, Z)n(¥)]

~ 5[5, 2)n(X) - S(X, Z)n(¥ ).

Putting Z = £ in (5.3) we get
(5.4) 2(C(X,Y)E = 0.
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Again putting X = £ in (5.3) we get

r

ACEN)Z) = (s = )—5lo(Y, 2) = n(YIn(2)

(5.5) "
_;1_2[5(y, Z) - (n = V(Y )n(2)).
Now
s (FEXOWVW = REXICWVIW - CREXIVIW

—C(U,R(&,X)V)W — C(U,V)R(E, X)W.
In virtue of R(§, X).C = 0 we have from (5.6)
R(E, X)C(U, V)W — C(R(E, X)U,V)W — C(U, R(§, X)V)W — C(U,V)R(§, X)W =0

or,

9(R(&, X)C(U,V)W,£) — g(C(R(§, X)U, V)W, )

Taking into account the fact that the characteristic vector field £ belongs to the
k-nullity distribution we obtain from (5.7) that

K[C(U,V,W,X) = n(X)n(C(U, V)W) + n(U)n(C(X, V)W)

(5-8) +0(V)n(C(U, X)W) + n(W)n(C(U,V)X) - g(X, U)n(C(&, V)W)

—9(X, V)n(C(U,E )W) — g(X,W)n(C(U,V)§)] = 0,

where C(U,V,W, X) = g(C(U,V)W, X ) and R(U,V,W, X) = g(R(U,V)W, X).
Putting X = U in (5.8) we get

k[C(U,V,W,U) 4 n(V)n(C(U,U)W) + n(W)n(C(U,V)U)

(5.9)
-g(U,U)(C(&, V)W) = g(U,V)n(C(U,E)W + g(U,W)n(C(U,V),£)] = 0.
Using (5.4) we get from (5.9)
(5.10) K[C(U,V,W,U) + n(V)n(C(U,U)W) + n(W)n(C(U,V)U)
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Let {e;}, 1 = 1,2,...,n be an orthonormal basis of the tangent space at each
point. Then the sum for 1 < ¢ < n of the relation (5.10) for U = e; gives

(5.11) k(n — 1)n(C(E, V)W) =0

Since n # 1 either k = 0 or n(C(§&, V)W) = 0.
But in virtue of Theorem 1 we must have

(5.12) 2(C(E, V)W) = 0.
Thereofore using (5.4), (5.12) and Theorem 1 we get from (5.8) that
C(U,V,W,X) = n(X)n(C(U,U)W) + n(U)n(C(X, V)W)

(5.13)
+0(V)n(C(U, X)W) + n(W)n(C(U,V)X) = 0.
From (5.12) and (5.5) we get
(5.14) S(ViW) = (=7 = Da(V;W) + (n = ——)n(V)n(W).

From (5.14) we can state the following theorem:

Theorem 2. If a K-contact manifold whose characteristics vector field ¢
belongs to the k-nullity distribution satisfies the condition R(£,X).C = 0, then the
manifold is n-FEinstein.

Again using (5.14) and (2.2) from (5.3) it follows that

(5.15) n(C(X,Y)Z) = (k- 1)[g(Y, Z)n(X} - y(X, Z)n(Y)].
Thus using (5.15) from (5.13) we have
(5.16) C(U,V,W,X) = (k- 1)[g(U, X)n(V) — g(V, X)n(1")|n(W).

Putting X = £ in (5.16) we have C(U,V,W,§) = 0. That is, C(§,X)Y = 0.
Thus we have the following theorem:

Theorem 3. If a K-contact manifold whose characteristics vector field
§ belongs to the k-nullity distribution satisfies the condition R(§,X).C = 0, then
C&X)Y =0.

Since for k = 1 the manifold becomes Sasakian, from (5.16) we have the follow-
ing corollary:

Corollary. If a Sasakian manifold satisfies the condition R(£,X).C = 0, then
it is locally isometric with a unit sphere S™(1).

The above corollary has been proved by M. C. Chaki and Tarafdar in [1).



272 N. Guha, U.C. De

REFERENCES

[1] M. C. CHAKI, M. TARAFDAR, On a type of Sasakian Manifold. Soochow Journal
of Mathematics, 16 (1990), 23-28.

[2] D. E. BLAIR, Contact manifolds in Riemannian geometry, Lecture Notes in Math-
ematics, 509, Springer-Verlag, Berlin, 1976.

[3] S. SAsAKI, Lecture Note on almost contact manifolds, Part I, Tohoku University,
1965.

[4] S. TANNO, Ricci curvatures of contact Riemannian manifolds. Tohoku Math. J.
40 (1988), 441-448.

[5] S. SAsAKI, Lecture Note on almost contact manifolds, Part II, Tohoku University,
1967.

(6] R. L. Bisgop, S. I. GOLDBERG, On conformally flat spaces with commuting
curvature and Ricci transformations. Canad. J. Math. 24 (1972), 799-804.

Department of Mathematics,
University of Kalyani,
Kalyans - 741 235,

West Bengal, INDIA.

Received 17.09.92



