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AN APPROACH TO DECISION MARKOV CHAINS
B. D. DOYTCHINOV, T. I. DOITCHINOVA

ABSTRACT. Decision Markov Chains with total sum criterion are explored. A new
approach is proposed. It is proved that under certain conditions stationary Markov
strategies are sufficient for the optimal control of the process. The existence of an
optimal strategy is proved in a problem of constrained extremum.

Introduction. This paper deals with Decision Markov Chains with total sum
criterion. We show that stationary Markov strategies are sufficient for the optimal
control of the process under certain conditions. To prove that, we use a new and
simple approach, similar to the method used by N.V.Krylov [1] for controlled diffusion
processes.

In [1] N. V. Krylov considers a diffusion process described by the stochastic
differential equation

dz, - U(I‘, Gg)dtlh + b(z‘,a,)dt, t 2 0, Ip=17

where w; is a multidimensional Brownian Motion and a; is a stochastic process which
takes values in a set of actions A and which is used to implement the control. Un-
der appropriate regularity conditions, N. V. Krylov proves the existence of an optimal
Markov process. The proof is very elegant and simple, because it is based on using the
Green measure of the process and does not use the technique of dynamic programming
at all. Theorem 1.2 of [1] is fundamental for the method and appears somewhat unex-
pected; it says that for every strategy (i.e. possibly non-Markov) one can find more or
less explicitly a Markov strategy with the same Green’s measure.

We were inspired for our research by the note in [1] that the same construction
should work in the case of Decision Markov Chains. The statement of our Theorem 1
could be considered as an analog of Krylov’s Theorem 1.2 in [1]. We give a direct proof
for Decision Markov Chains, not trying to emulate Krylov’s proof, although the reader
could find a parallel between our Lemma 1 and Green’s measure.
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In the literature on Decision Markov Chains other problems are often considered
as well: optimal control with average criterion, the optimal stopping time problem,
problems with finite horizon, etc. We do not deal with these questions in our paper at
all. The reader is referred to the monographs (2] and [3], in which similar and other
problems are considered. They contain a very good overview of the subject as well as
an extensive bibliography.

Upon examination of the existing results, one should notice that the major part
of proofs of existence of optimal Markov strategies relies heavily on Bellman’s principle.
We believe that our approach is an interesting alternative, because it makes it possible
to prove similar results without using Bellman’s principle, and, in fact, without using
any deep technique of stochastic processes.

The paper consists of four parts. The first part contains some definitions and
descriptions. The main result is given in the second part. Some straightforward corol-
laries (both new results and simpler proofs for known facts) are deduced in the third
part. In the last part the main result is applied to prove the existence of an optimal
strategy for a problem of constrained extremum.

1. Some preliminaries. We consider a discrete time decision Markov pro-
cess, having a countable set of states X, a countable set of actions A, and transition
probabilities pa(i, ), Pa(i,5) 2 0, Y _pa(i,j)=1,a € 4,4,j € X.

j

Denote H, = (X x A" x X, n = 0,1,.... A strategy v is a sequence
(%0, ®1y...,Tn,...) of functions 7, : A x H, — [0,1], such that Vn and Vh, € Hn
we have Et,.(alh,.) = 1.

Inf.ormally, the dynamic of a Decision Markov Chain can be described as follows.

A function r : X X A — R is given, called the return function.

At each moment n, the Chain is at a state z, € X. We observe this state
and, knowing the history h, = (zo,4aq9,...,8n-1,2Z5) of the process up to this moment,
we choose an action a, € A. As a result, two things happen. First, we immediately
gain a (possibly negative) return r(z,,a,). Second, the Chain moves to another state
Zn41 € X, with probability p,,(Zn, Zn41)-

To use a strategy * = (7, my,...,®p,...) means that at every moment n we
choose to apply the action a € A with probability 7(alh,), where h, = (2o, a,...,@n-1,
z,) is the history of the process up to moment n.

We can choose which strategy to use and the goal is to find the strategy which
maximizes the expectation of the total income

o0

Z 7(Tny On)-

n=0
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A slight generalization is to try to maximize the expectation of the expression

i ﬂ"r(z.., “n)’
n=0

where 7 is a stopping time and 0 < 8 < 1. The number S is called a discount factor.

To make things precise, let us introduce some definitions and notations.

Let @ = (X x A)* and let F be the o-algebra in Q generated by the rectangular
subsets of 2, i.e. the subsets of the form II32,(X, X A,), whereVn : X,, C X, A, C A
and 3ng > nVn>no: X, =X, A, = A.

Given a strategy * = (7o, 71,...,%p,...) We can define for every n > 0 a
transition probability P*"+! by the formula

P""+1(C|h,.)= E *(alhn)pa(z, z)

(a,z)eC

forall C C Ax X, h, = (z0,...,8n-1,2Z5n) € H,. Then, by the Theorem of Ionescu-
Tulcea (see e.g. [4]), for every initial state z € A there exists a unique probability P¥

on (2, F) whose value for every rectangular set H(X,. X Ap) is given by

n=1

Pl (ﬁ(x,. x A,.))
n=0

= Z Oz2, fO(“OI’O)Pao(IOa 1—'1)*1(anlzo, ao, :I)Pol (21, z3)... ’v\o(allz(h GOy v ey z'\o)r

where §;; is the Kronecker’s §-symbol, ng is large enough so that ¥n > ng : X, = X,
A, = A, and the summation is over all ag € Ao, a1 € Aj,...,8n, € An,, and all zo € X,
Z1 € Xpye ooy € Xno-

The expectation associated with the probability measure PJ on (2, F) will be
denoted by EI.

Now let us introduce some classes of strategies which we will consider in this
paper.

We will denote the set of all possible strategies by II.

A strategy = is said to be a randomized Markov strategy, if

Vth,, = (:I:o, . ,a.._l,z..) €EH: fn(alhu) = '(alzn)°

Two narrower classes of strategies can be defined as follows.
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A randomized Markov strategy « is called to be stationary if YnVaVz : r,(a|z) =
x(a|z), i.e. it does not depend on n. We will denote the class of stationary Markov
strategies by RM.

Another subclass of the randomized Markov strategies is the class of all pure
(non-randomized, deterministic) Markov strategies. Formally, a randomized Markov
strategy is pure if VaVz € X3a € A : 7,(a|z) = 1. We will denote the set of all pure
Markov strategies by M.

Let D be a subset of X, and let 7 be the first moment for the process to exit

D,i.e.
(1) ;- inf{n>0:z,¢D} if{n>0:2,¢gD}#0O
) if{n>0:2¢ D} =0.
Throughout this paper we assume that
(2) T = sup EI7T < oo.
z€X
w€ll

For every bounded function r(z,a) and every number 8 € [0,1] we denote
-1

E Y B"r(2n,an) by (R5(D)r)(z) or simply by R3(D)r(z).
=0
" We will use the letter x to denote the indicator functions, e.g.:

o(2,0) = 1, fz=4a=0> (2) = 1, ifz=1
Xib(%,@) = 0, otherwise v Xil#)= 0, otherwise.

2. The main result.

Theorem 1. Let a subset D C X and an initial state zo € D be given. Let r
be the ezit time defined by (1) and assume that (2) is satisfied. Then for each strategy

7 € Il there ezists a ¥ € RM, such that for every bounded function r(z,a)
1(D)r(z0) = RY(D)r(o).
The strategy T can be determined by the formula:

7(ali) = (R{(D)xi.a)(zo) - (RT(D)x:)(20))™".

To prove this theorem we need the following two lemmas.
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Lemma 1. For all bounded functions f(i,l), i € X, | € A consider the
transformation f(i) = Zf(i.l)'t'(ﬂi), where T is defined by the ezpression given in

[
Theorem 1. Then for all zo € X

R}(D)f(z0) = RY(D)f(z0).

Proof. If zo € D, then R](D)f(zo) = R’{(D)f(zo) =0. If zg € D, then

RI(D)f(z0) =E5, 3_ Y f(i,0x{zn=i,an=1l,n < 7}

n=0i€D I€A

=33 fGDRI(D)xia(z0) = 3 Y f(i,F(1)RT(D)x(=o)

i€D €A i€D leA
= R{(D)f(z0).
Thus, the proof of Lemma 1 is completed.

Lemma 2. Let u(z) be a bounded function such that u(z) = 0 for z ¢ D.
Then u(zo) = —R](D)w(zo), where

w(z,0) = 3 u(i)e(z,]) - u(z).

J€D

-1

Proof. Note that u(zo) = —EJ, E (w(Zp41) — w(zn)). Indeed,
”=o

r-1 o0 )
~E5, Y (w(Znsr — u(zn)) = EL, (Z u(za)x{n < 1} = Y u(za)x{n < r})
n=0

n=0 n=1

=Eg, ("(Zo)x{0 <r}= Y wza)x{n= ‘}) = u(zo),

n=1
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since u(z) = 0 for z ¢ D and x{0 < t} = 1. Further,

ELu(zns1)x{n < 7} = Y w(j)PL, {Zas1 = jyn < 7}

JED
=Y ui) Y Y Pi{tns1 =jran=lza=i,n < 1)
j€D l€eA €D
= 3> u()auli, ES, x{an = L, 20 = i,n < )
JeDieD leA
=E5, Y u(j)Pan(z,5)x{n < 7}.
j€D
Therefore,
-1

u(z0) = —EL, ) (w(Zn41) — u(zn))
n=0

-1
=-E}, ) (Z U(3)Pan(2n,3) - u(z,.)) = —R}(D)w(z0).

n=0 \jeD

All the calculations with the series are legitimate because of the condition (2).
Thus,the lemma is proved.

Proof of Theorem 1. Take an arbitrary bounded function r(z,a) and consider
u(z) = R"(D)r(z) Note that for z ¢ D, u(z) = 0. If z € D, we have

u(z) = Efz r(Zn,8,)x{n < 7}

n=0

=Y r(z,0F(e)+ 3. Y u(i)F(l2)pu(z, 5).

leA leA ;€D

Hence, for z € D:

Yo (@ hF(le) = u(z) - 3 Y w()ER(l2)p(z, 5).

leA leA ;€D

Now, for z € D we have

(z) = ) #®(llz)u(z) - Y wi)FRz)e(,5) = = 3 F(l|z)w(z, 1) = ~3(z).

leA I€A ;€D leA
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Next, by using lemmas 2 and 1, we obtain:
u(zo) = —R{(D)w(20) = —R{(D)w(z0) = RY(D)(z0) = R{(D)r(z0).
On the other hand, by definition, u(zo) = Rf (D)7(zo), which implies that
R{(D)r(z0) = R{(D)r(z0)-

Thus Theorem 1 is proved.
3. Applications. In this section some applications of Theorem 1 are given.
Corollary 1. Let0 < 8 < 1. Fiz z9 € X. Then, for each strategy = there
erists ¥ € RM such that for every bounded function r(z,a):
RE(X)r(z0) = RB(X)r(zo).

Proof. To establish this, we use Theorem 1, incorporating the discount coef-
ficient 3 into the transition probabilities and by adding an additional absorption state
z* as follows.

Denote X = X U {z*},z* ¢ X, A = 4, 7(i,a) = r(i,a), N(z*,a) = 0, pa(i,5) =
Bpa(i,7), Pa(i,z*) = 1 — B, pa(2*,2*) = 1 for all i,5 € X, a € A. Further, denote
r=inf{n >0:2, =2*} =inf{n > 0:z,  X}. It is easy to check by induction that

VxVia,n: ?:o{:n = 1,8, = a} = f"P {Zn = i,6, = a}.
Hence, for every strategy = we have
R{(X)r(z0) = RE(X)r(zo).
Now, using theorem 1, we find a strategy ¥ € RM such that
R{(X)r(z0) = R{(X)r(z0).

This means that : 3
R(X)r(zo) = RE(X)r(zo).

Thus the proof is completed.

Corollary 2. Under the assumptions of Theorem 1, for each strategy = there
ezrists T € RM such that for every bounded function r(z,a):

T T

EL, D (Zn;an) = EZ, 3 (2, an)

n=0 n=0
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Proof. Let us add one more state, z*, such that p,(z*,z*) = 1 foralla € A
and p4(z,z*) = 1forall z € X\ D and for all a € A. Denote by o the first moment for
the process to exit X (the old state space), i.e. the first moment to reach z*. Apply
Theorem 1, taking into account that o — 1 = 7. This completes the proof.

~ Next follows a new, straightforward proof of a known fact. In the Introduction
of [3] it is proved by induction while here it is derived immediately from Corollary 1:

Corollary 3. Fiz zo € X. Then for each strategy * € Il there erists a
randomized time-depending Markov strategy x, such that for every n € N, y € X,
b € A the following equality holds:

P:o{:l:,. =Y, an = b} = P:O{zn =y,an = b}-
The strategy * can be determined as follows:

*n(a|z) = PL {zn = 2,00 = a} - (PL {za = 2}) .

Proof. Along with the process zg,ag,z1,a;,... consider the "extended” pro-
cess Zo, 4o, Z1,61,. .., where Z, = (z,,n) € X X (NU {0}), a, € A. This new process
can be regarded as a decision Markov chain with a state set X = X x (NU {0}), with
an action set A, and with transition probabilities p,((z,m),(y,n)) = pa(Z, ¥)0m+1,n,
where §; ; stands for the Kronecker’s §-symbol. Moreover, there is an obvious and nat-
ural interconnection between the strategies r for the original process and the strategies
7 of the "extended” one:

i'\ﬂ(al(z()v 0)’ A0y« vy (z!l) ")) = f"(a|20, A0y v vy 3n)-
Note that for every n, z and a:
P;o{z,‘ = 2,0y = a} = P:o{fn = (z,n),a, = a}.

Note also that to a stationary Markov strategy ¥, there is a corresponding Markov
time-depending strategy x. To finish the proof, apply Corollary 1, with an arbitrary
fixed 8 € (0, 1), taking for r the function r(Z,a) = r((z,k),a) = x{z = y,k = n,a = b},
where the integer n, y € X, and b € A can be chosen arbitrarily.

The next corollary presents an illustration of the usefulness of Theorem 1. Usu-
ally results of this type are obtained by using Bellman’s principle (see, e.g. [2], [3]).
Here we give a very simple proof. Moreover, in this form it is a new result and in our
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view, it will be shorter and more convenient to give a straightforward proof rather than
to try to deduce it from a similar fact.

Corollary 4. Under the assumptions of Theorem 1, for every bounded func-
tion r(z,a) the following relation holds:

sup RY(D)r(zo) = sup R{(D)r(zo),
»ell TEM

where Pi is the class of all strategies, and M is the class of all pure (i.e. non-
randomized) Markov strategies.

Proof. Fix zo € D. From Theorem 1 we have
Vr € I 3% € RM such that R (D)r(zo) = RY(D)r(zo).

Now it is enough to show that Vx € RM 30 € M such that u(x,zo) < u(0, zo), where
u(7,z0) = RT(D)r(zo)-
For each z € D we have u(7,z) = Zr(alz)g(z,a), where g(z,a) = r(z,a) +
a€A
Z pa(z,y)u(r,y). Since for every fixed z the probabilities x(a|z) determine a dis-

veD
tribution on A, then for every z € X an action a; € A can be found, such that

g(z,az) > u(r,z). Let us determine the strategy o as follows:

o(alz) = { (1) ::::

Then,
w(oom,z)=r(z,a) + 3 pas(@,¥)u(r,¥) = 9(z,02)
veD
So, u(o o 7,z) > u(r,z). Here o o v denotes a strategy which coincides with o at the
zero moment and with = further on. More generally, we use the notation o™ o x to

denote the strategy, which prescribes applying o in the first n steps, and = further on
after that, i.e.

(momuten = el kS

From the last inequality we conclude by induction that for every n, u(o™or,z) >
u(o™ ' ox,z), and hence u(0™ o7, z) > u(x,z). Further,

n-1

u(o®ox,z) = E z x{k < r}r(zx,ax) + EIx{n < t}u(r, z,).
k=0
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The function r is bounded, sup |r(z,a)| = C < oo. Therefore, for every z:

|u(r,z)| < EI f:x{k <1}C <CT < .
k=0

This implies [EZx{n < T}u(x,z,)| < C-T -EZx{n < 7}. The last expectation tends to
zero as n — 0o, by the Tchebyshev’s inequality and (2). Consequently, u(c™ox,z) —
u(o,z) as n — oo. Thus we obtain u(x,z) < u(o,z), and in particular u(r,zo) <
u(o, o) which yields the proof.

4. Optimal Control in a Problem with Constraints.

Theorem 2. Let the state set X and the action set A be finite. Let a subset
D C X and an initial state o € D be given. Let T be the ezit time defined by (1) and
assume that (2) is satisfied. Let f : X x A — R" be an arbitrary bounded vector-valued
function, and let F be a closed subset of R™. Denote by G the class of strategies x

such that ET Z f(zn,a,) € F, and by GM the subclass of all Markov strategies in G.
n=0
Suppose G # @. Then for every bounded function r(z,a):

T T
SupEZ Y 7(2n,an) = sup EI, Y r(zn,an)
€0 o TEGM n=0

Moreover, a strategy ¥ € GM can be found for which the supremum is attained.

Proof. From Corollary 2 it follows immediately that both suprema are equal.
We just need to show that this supremum is attained for some ¥ € M.

It will be convenient for the purposes of our proof to consider the strategies
in RM as points of the finite dimensional space RIXI1Al Then the class RM can be
regarded as a subset of RIXI'4| described by the constraints:

1) VaVz : 0 < 7(a|z) < 1.

2)Vz: Y #(alz) = 1.

a€A

The first family of inequalities shows that this subset is contained in the cube
[0,1)X I1Aland is therefore bounded. Further, since all inequalities are not strict (i.e.
they admit equality) this subset is closed.

Let us ]:rove first that for every bounded function g and for every z € D the

expression EX Z g(zn,a,) is continuous with respect to ¥ € RM (if the strategies of
n=0

RM are regarded as points in RIXI1Al) This statement is clear for expressions of the
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N T oo
type E ) x{n < 7}g(2n,an). For EI Y g(zn,an) = O Ezx{n < r}g(zn,an) the
n=0 n=0 n=0 -
continuity follows from the uniform convergence of the series Z Eix{n < 7}9(zn,an),
n=0
which can be estimated as follows. From Tchebyshev’s inequality V¥ € RM : PX{r >
2T} < 0.5. Further,

P*{r > 2nT}

= Y PI{r > 2T|z(a-ryor = 4,7 2 2(n = 1)T} - Pi{Z(noryar = ¥, 7 > 2(n — 1)T}}
veD

<053 PH{z(a-1)or = ¥,7 2 2(n - 1)T} = 0.5P%{r > 2(n — 1)T}.
veD

From here we can conclude that Pf{r > 2nT} < (0.5)". Using this estimation we get

o0 ~ oo 2T - o 2T
SEir2n)= Y Y Pir22mT+k < ¥ Y (0.5 = 4T
n=1 m=0 k=1 m=0 k=1

Since the absolute value of the function g is bounded by some constant C, we obtain

o 0 oo 2T
Y IEIx{n < 7}g(zn,an)| < C Y EIx{n<T}<C- <1 +> Z(o.s)"') < 0.
'l=°

n=0 m=0 k=1

Thus, we proved that Efo Y n=09(Zn,an) is continuous with respect to ¥ € RM for
T

T

each z € D. Therefore, both Ei Z f(zn,ay) and Eio 2 r(Zn,a,) are continuous with
n=0

n=0
respect to ¥ € RM.

It is well known that a continuous function on a compact attains its supremum.
Therefore it is enough to prove that M is a compact. As we already mentioned, in
the space RIX |14l the class of strategies RM forms a closed and bounded subset. Since

T

X and A are finite, it is compact. Further, since Efo z f(zn,ay) is continuous with

=0
respect to ¥ € RM, and F is closed, then GM is clo:ed as the pre-image of a closed
set under a continuous mapping. Since M C RM, and RM is compact, we conclude
that GM is compact. Thus, the theorem is proved.

Corollary. Let the state set X and the action set A be finite, and let 0 <
B < 1. Fiz a state 2o € X. Let f : X x A — R" be an arbitrary bounded vector-valued
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function, and let F' be a closed subset of R™. Denote by G the class of strategies * such
that R3(X)f(zo) € F, and by GM the subclass of all Markov strulcgies in G. Suppose
G # Q. Then for every bounded function r(z,a):

sup Rg(X)r(zo).

-~

sup R3(X)r(zo) =
r€g TegM

Moreover, a strategy ¥ € GM can be found for which the supremum is attained.

Proof. This fact is derived from Theorem 2 in the same way as Corollary 1 is
derived from Theorem 1.
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