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SOME SEQUENCE SPACES AND ALMOST CONVERGENCE
EKREM SAVA§S

ABSTRACT. The purpose of this paper is to introduce and investigate some new
sequence spaces. Also some inclusion theorems have been established.

1. Introduction. Let s be the set of all real or complex sequences and let
us denote by £,, the Banach space of bounded sequence z = (z;) normed by ||z|| =
sup |zx|. Let D be the shift operator on s, that is,

D((zx)) = (zk41)-

It may be recalled that (see, Banach [1]) Banach limit L is a non-negative linear func-
tional on £, such that L is invariant under the shift operator (that is, L(Dz) = L(z),
Vz € ly) and L(e) = 1 where e = (1,1,1,...). A sequence z € { is called almost
convergent (Lorentz [4]) if all Banach limits of z coincide. Let ¢ be the set of all almost
convergent sequences. Lorentz proved that

¢ = {z : li'{‘n ;% Z'; Tp4; exists uniformly in n} .
Several authors including Duran [2], King [3] and Schaefer [8] have studied almost
convergent sequences. .

It is natural to expect that almost convergence must be related to some concept
BV in the same vein as convergence is related to the concept of BV. BV denotes the
set of all sequences of bounded variation and a sequence in BV will mean a sequence of

almost bounded variation. BV was introduced and discussed in [6]. Also BV naturally
comes up for investigation and is considered along with BV . To define BV , let

1 m
(l) dmn = dmn(z) = m_+1 gz"“
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with DO = 1. It is evident that

(2) don(z) = 2z, = D°z,,
Now define
(3) d-l'.‘(z) = D"z,, =ZTp-1

and then write for m,n > 0,
(4) tmn(2) = dmn(2) = dm-1,a(2).
So that by (2), (3) and (4) we have

ton(z) = D°z, — D'z, = 2, — Zp-y.

When m > 1 a straightforward calculation shows that
1 m
tma(2z) = '-n(—m+—l)' 'Z’.;(zn-l-i = Zpgi-1)-
We define (see, [6])

—

B

{z - Z |tmn(z) converges uniformly in n}

ﬁ"; = {z : supZIt,,...(z)l < oo} .

Note that BV= {z - z |zx = Zg-1| < oo}, where we define z_; = 0. BV is Banach
k

space normed by

lzll = Y |2k = zx-1] < oo

k
Let A = (ank) be an infinite matrix of real or complex numbers. We write
Az = (Ap(2)) if Ap(z) = Ea,.;,z‘, converges for each n. Let X and Y be any two
k

nonempty subsets of s. If z = (z4) € X implies that Az = (A,(z)) € Y, we say that
A define a matrix transformation from X into Y and we denote it by A: X — Y. By
(X,Y) we mean the class of matrices A such that A: X — Y.
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In this paper we introduce and study, using the idea a of infinite matrices, some
new sequence spaces which generalize the spaces BV and BV studied by Nanda and
Nayak. We establish some inclusion relations. Our results include the corresponding
results of Nanda and Nayak.

The spaces|B,p| and |B,p|. Let B = (bnk) be an infinite matrix of real
or complex numbers and-let (p,) be a sequence of real numbers such that p,, > 0,
sup p;m < 0o. We define

|B,p| = {z : E |Ba(z) = Bp-1(2)|” < oo}
(Bp)o = { X : s0p |Bo(2) = Baa (a)P < oo}

|§,p| = {: : Z |tmn(Bz)|P™ converges uniformly in n}
m

IEsP| = {3 :‘“Pz: [tmn(Bz)|P™ < w} ’

where
tmn(Bz) = Zb(n,k,m):l,
k
is such that
1 m
b(n,k,m) = mm+1) ;i(bmh‘,k = bpgpi-1k) M1,

b(n, k,0) = bpx — bp—14.
If p, = p for all n, then we wxjte | B|, for | B, p|. Similarly if p,, = p for all m, we write
|§|, and |§|, for | B, p| and | B, p| respectively. If pm = p for all m, we write (B), for
(B,P)oo-
We now have
Theorem 1. |B,p|C |§,p|
Proof. Let z € |§,pl. Then, there is an integer M such that

Pm
(5) )

<L
m>M

2 b(n, k, m)z;

k
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Hence it is enough to show that for fixed m, Eb(n, k,m)zy is bounded. It follows
. k
from (5) that

<1 for m>M and all n.

’Z b(n,k,m)z
k
If m > 1, then

(m+1)) " b(n,k,m)zi — (m = 1) Y b(n, k,m — 1)zi
k k

= E bn+m,k3k - z bn+m-1.kzk-
k k

Hence for any fixed m > M + 1, an+m,k1‘k - 2 bp4+m—1,kZk is bounded. Therefore
k k

z b(n,k,m)zy is bounded for all m,n and this completes the proof. O
k

Theorem 2. |B,p| is a linear topological space paranormed by

pn\ 1/M
f(:)=(2 ) ,

where M = max(l,supp,.).|§,p| is paranormed by
Pm )l/M

(6) 9(z) = sup (E
lﬁ,pl is paranormed by (6) if inf p,, > 0. Also ifinf p, > 0, then (B, p)w is paranormed
by

E(bnk - bn—l.k):k
k

E b(n,k,m)z
k

pn/M
h(z) = sup
n

Y " (bak = bnoyk)zi
k
Proof. Because of Theorem 1, (6) is meaningful for z € |§,p|. The proof is a

routine verification by using standard techniques and therefore we omit it.

Theorem 3. Ifp > 1, then |B|, C |§|,.

In order to prove Theorem 3 we require the following Lemma.
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Lemma 1. Suppose that
(i) E |@amn| converges for each n,

(i) D lamal = 0 as n = co.

m
Then 2 |@mn| converges uniformly in n.
m

see, for example, Maddox [5], p. 168.
Proof of Theorem 3. Let z € |B|, and m > 1. We have by Hélder’s
inequality when p > 1 and trivially when p =1

P
<

1 = .
m(m—+1) Z E t(bnpik — bngi-1,k)Zk
i=1 k

4

1 m
<— V'
~ m(m+ 1) Z'

E(bn+i.k = bnyi-1,k)Zk
=1 k
Hence,

oo P

»

=1

Zb(n,k,m)zk
k

P oo

o0
) 1
< E g Z(b"+i'k - bn+i—l.k)xk 2 ;.n(m—+1),
i=1 k m=i
. P
Y 1Y ik = bagicra)zi
=1 k
Then since b(n, k,0) = byx — bp_1 &, we have
P

2

P 00
> b k,m)a| < Y
k

i=n+1

Z(bik = bi—1x)Zk
*

Hence the hypotheses of Lemma 1 are satisfied for

4

bm“ = Z b(”v kv m):k
k

This completes the proof. 0O
Theorem 4. |§|, C (B)oo-
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Proof. Note that

P\ 1/p

(7) sup zb(n,k,m)z), < (supz )

mn | TF " m
(8)  sup (D b(n,k,m)zi| > sup|D_ b(n,k,0)zi| = sup Y (bak — bn-1,4)zk

mn | T L n k

sup Zb(n k,m)zi| = sup m( + l) Z z(bn-{uk bnti-1,k)Zk

(9) < "‘.1}) ;(bn+l k= bagi-1 k)q sup (m(m gy .Z; )

= %s P|Y_(bak — b-1,4)zs

k

Now the result follows from (7), (8) and (9). This completes the proof. O
This research was done while the author was a visiting scientist at Leicester
University.
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