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ON SOME COVER PROPERTIES

S. A. ANUFRIENKO

ABSTRACT. The present paper deals with some generalizations of paracompactness
which can arise by using the concept of weakly discrete families of sets and related
properties. These generalizations and their particularities are in contrast to those
which come by varying the power of an open cover or local and point covering
properties. In particular, some generalizations of paracompactness considered in
the paper are not invariants of perfect mappings and do not imply metacompactness
even if perfect normality is provided.

Throughout this paper a space will mean a T)-space, i.e., every finite subset of
the space is closed.

1. Some weaker forms of paracompactness. We will begin with the fol-
lowing definitions.

Definition 1.1. A family v = {U} of sets in a space X is said to be weakly
discrete if every set {z(U) € U : U € v} is a discrete set in X (see (1]). If the set
U{F(U)C U : U € v} is discrete in X for every finite (resp. discrete in X ) F(U),
then we say that v is f-family (resp. d-family).

Definition 1.2. A space X is said to be weakly-d-paracompact (resp. d-
paracompact) if every open cover of X has a weakly discrete (resp. d-) refinement.
By requiring that every open cover of X has an open weakly discrete refinement (resp.
open f-refinement, open d-refinement) we introduce the class of weakly-f-paracompact
(resp. f-paracompact, strong-f-paracompact) spaces. We will use abbreviations, e.g.,
wdp space for weakly-d-paracompact space.

The d-families and the class of d-paracompact spaces were introduced by N.
V. Velitko in [6].

Remark 1.3. Since a locally finite cover is a d-family, paracompactness implies
sfp property implies dp property implies wdp property. And sfp implies fp implies
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w fp implies wdp. In general, there are no other implications. We shall consider some
special cases.

Definition 1.4. A space X is called a g-space (see [4]) if every z € X has a
sequence of neighbourhoods {U; : i € N} such that if z; € U;, for every i € N, then
{zi: i € N} has a limit point in X.

Remark 1.5. Let 7 be an open weakly discrete cover of a g-space X. Let
A = {z € X : any neighbourhood of z meet infinitely many members of v}. Then every
z € A is isolated in X and A is closed. Thus,9' = {U\ A: U €y}u{{z}: z € A}is
an open loccaly finite refinement.

Using Remark 1.3 and Remark 1.5 we have the following

Corollary 1.6. A g-space is paracompact if and only if it is wfp.
Thus, every weakly discrete family of sets in a Fréchet space X is closure-

preserving. At the same time, there exists a regular space of countable tightness which
is not paracompact (see Example 3.4.). In the realm of k—-spaces we have the following

Proposition 1.7. Every closed weakly discrete family in a k—space X is
closure—preserving.

Proof. Let F = {F} be a closed weakly discrete family which is not closure-
preserving in a k-space X. Then, there exists a subfamily ¥’ C F such that UF’ is
not closed in X, and thefore, is not closed in a compact K C X. Since every F € F is
closed, then for every finite ¥” C ¥, (U(F'\ F”"))N K # @. Thefore, we can choose
infinite {z; : 1 € N} C (UF’)N K such that distinct elements of the sequence belong
to the distinct elements of F’. {z; : ¢ € N} has a limit point, but F is weakly discrete.
A contradiction.

We will show that the above generalizations and paracompactness are equivalent
for every linearly ordered space. To prove it, some preliminary notations are needed.
Let (X, <) be an ordered set. A gap (A, B) in X is a left Q-gap if either A = @ or
there exists an increasing transfinite sequence zq, 4, ..., ¢,..., £ < a of elements of A
which is cofinal in A such that for every limit ordinal number A < a the set {z¢ : £ < A}
has no least upper bound in X; a right Q—gap in X is defined analogously. By a Q-gap
in a linearly ordered set X we mean a gap in X which is both a left Q-gap and a
right Q-gap. In [5] Gillman and Henriksen proved that a linearly ordered space X is
paracompact if and only if every gap in X is a Q-gap.

Theorem 1.8. Let X be a linearly ordered space. Then the following condi-
tions are equivalent:

1. X 1s paracompact.

2. X issfp.
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3. X is fp.
4. X iswfp.
5. X is dp.
6. X is wdp.

Proof. According to Remark 1.3. it is sufficient to prove that 6) = 1). On
the contrary, suppose that X is not paracompact. According to the result of Gillman
and Henriksen there exists a gap (A, B) which is not left Q—gap (if the gap is not
right Q-gap, the proof is the same). Since A is a closed subspace in X, A is wdp (it
can be shown by standart argument). Let {z¢ : £ < a} be an increasing transfinite
sequence which is a cofinal set in A. Let us remark that a is a limit ordinal, otherwise
a = f+1and {z5} is a cofinal set in A. Define Us = {z € A: z < z¢}. The open
covering U = {Ug} has a weakly discrete refinement V. Then {V; : £ < a}, where
Ve=U{V: VeV, f=min{u<a: VCU,}} is weakly discrete too and refines U.

Prove that W = {£ : € < a, Ve \U{U, : p < £} # O}} is cofinal in a.
Otherwise there is an ordinal number 38 < a, such that for every £ € W it follows that
¢ < B and V, C Up for every p < a. Therefore z5 § U{V; : £ < a}. Thus, W is cofinal
in a.

Choose an y¢ € Ve \U{U, : p < £} for every £ € W. Obviously, y¢ < y, for
every £ < pand &, u € W. Moreover, {y¢ : £ € W} is cofinal in A. To prove the latter,
suppose, on the contrary, that there exists a z,, p < a such that y, < z, for every
€ € W. But then £ < u+1 for every £ € W. Since a is a limit ordinal and W is cofinal
in a we obtain a contradiction.

Since (A, B) is not a left @-gap, then {y¢ : £ € W} has a limit point. But
{V : € < a} is a weakly discrete. Thus is a contradiction which completes the proof.

2. Invariance of the generalizations. In this section, we establish some re-
sults which distinguish the considered generalizations from the standart ones. To begin
with let us mention one type of mappings. A mapping f: X — Y is said to be weakly
closed if for every discrete A in X the image f(A) is discrete in Y. These mappings
were introduced by N. V. Veli¢ko in [6]. He also proved that d-paracompactness is
an invariant of weakly discrete mappings. Without essential changes, it can be proved
that wd-paracompactness is an invariant of weakly discrete mappings too and that
w f-paracompactness and sf-paracompactness are invariants of open weakly discrete
mappings.

Let TW(wg + 1) be the ordinal space {a : a < wp}.

Lemma 2.1. If X is sfp, but not metacompact, then X x TW(wo + 1) is not
wfp. :
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Proof. By hypothesis, X has an open cover ¥ = {U} which possesses no
point-finite refinement. Then 7' = {x3'(U): U € 7} has not any weakly discrete
refinement. On the contrary, suppose 7’ has a weakly discrete refinement v” = {V}.
For every z € X the point (z,wp) belongs to finitely many members of ¥”. But then
{VN X x {wo}: V € 74"} is a point—finite refinement of 4. A contradiction.

Theorem 2.2. An inverse image of a sfp (resp fp) space Y under any perfect
mapping is a sfp (resp fp) space if and only if Y is metacompact.

Proof. It follows from Lemma 2.1 that these properties are not inverse invari-
ants of open perfect mappings, so that it is sufficient to prove thatif g: X Y is a
perfect mapping onto a metacompact sfp space Y, then X is the same. '

Consider an open cover {U, : s € S} of the space X and for every y € Y choose
a finite set S(y) C S such that g=(y) C U{U, : s € S(y)}. Since g is closed, there exists
a neighbourhood V;, of the point y such that g=(y) C ¢~ (V;) C U{U, : s € S(y)}-
The open cover {V, : y € Y} has an open point-finite d-refinement {W; : t € T}.
The family {g~}(W;) : t € T} is an open cover of X and for every t € T there exists
v € Y satisfying ¢g~'(W;) C ¢71(V,,) C U{U, : s € S(u)}. We shall show that the
family {g='(W;)N U,: t€ T, s € S(y)} is a d—family.

Choose an arbitrary discrete set F;, C ¢~'(W,) N U, for every t € T and
8 € S(ye). The set Fy = U{F;, : s € S(y)} is a discrete set in X. Let us show
that U{F; : t € T} is a discrete set in X. On the contrary, suppose there exists
T' C T such that A = U{F;: t€T'} \U{F; : t € T} is not empty. Choose an
z € A. Let us note that g(F;) C W, and g(F;) is discrete for every t € T. Since
{Wy: t € T} is a d-family, there exists for every t € T” finite F{ C F; such that
e U{F/: teT'}\U{F/: teT'} and g(U{F}: t € T'}) = g(z). But g(z) belongs to
finitely many members of {W; : t € T}. That assertation contradicts the condidtion
that g(z) is an image of infinitely many members of {F} : t € T'}.

The proof is the same when Y is a metacompact fp space.

Corollary 2.3. If X is a fp space which is an inverse image of sfp space Y
under a perfect mapping, then X is sfp.

Proof. Let us follow the proof of the above theorem. The open cover {g~!(W;):
t € T} has an open f-refinement {G,: t € T}. It is easy to check that {G,NU,: t€
T, s € S(y:)} is a d-refinement of {U, : s € S}.

Corollary 2.4. d-paracompactness is an inverse invariant of perfect map-
pings.

Proof. Since a pairwise disjoint d-family {W, : t € T} is a point—finite then
the proof is the same as in the theorem above.
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3. Examples.

Example 3.1. A perfectly normal metacompact fp space which is not collec-
tionwise normal. Michael’s subspace [3] of Bing’s space [2] is metacompact and fp.
To obtain a perfectly normal space satisgying these properties, one can use Bing’s
construction [2] to Michael’s subspace.

Example 3.2. A perfectly normal fp space which is not metacompact. Re-
placing o-product in Michael’s space by £-product, we obtain the normal fp space
which is not metacompact. Use Bing’s construction again.

Example 3.3. A regular dp space which is not fp. N. V. Velitko [6] gives an
example of a regular space which is an image of a paracompact space under a weakly
discrete mapping. This regular space is dp, 0—sfp, but it is not wfp. The latter may
be verified directly.

~ Example 3.4. A wfp regular space of countable tightness which is not fp. Let
D[R] be a countable discrete space. Let D[i,a] = D[R] for every i € N and a < w;.
Let X be theset {¢;: i€ N}U{pa: a<w}UB{D[i,a]: i € N, a < w,} equipped
with the following topology. The sets O,(¢;) = {¢:}U(U{D[i,a]\ f[i,a]: a € w1\ K}),
where K is any finite set of ordinals and |F[i,a]| < n for every a € w; \ K, are
neighbourhoods of ¢;. The sets On(pa) = {Pa} = {Pa}U(U{D[i,a]\ E[i,a]: i € N\K},
where K C N is any finite set and |E[i,a]| < n for every i € N\ K, are neighbourhoods
of p;. Every open cover which contains a neighbourhood of ¢; and p, for every i € N
and a < w; and points not belonging to the union of the neighbourhoods above, is a
weakly discrete family. Using the restrictions |F[i,a]| < n for every a € w; \ K and
|E[i,a]| < n for every i € N \ K one can easily check that X is a space of countable
tightness. Finally, X is not normal. The proof of this fact is similar to the proof that
the Tychonoff plane is not normal.

4. Questions. 1. Let X be a hereditarily collectionwise normal wdp space. Is
X paracompact?

2. Is X paracompact if X is collectionwise normal and wdp?

3. Is X paracompact if X is sequential and wdp?

4. Are the wdp, fp and sfp properties invariants of perfect mappings?
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