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ON SPACES WITH POINT-COUNTABLE K-NETWORKS AND
THEIR MAPPINGS

A.SHIBAKOV

ABSTRACT. A collection v of subsets of a topological space X is point-countable
if card ({£ € 7|€ 3 z}) < Ny for every point z € X. Spaces with point-countable
networks were studied by a number of authors (see [4] for bibliography). The
spaces with point-countable k-networks are closely related to quotient images of
metric spaces. Thus it is interesting to know what spaces are the images of spaces
with such networks under certain quotient maps. Corollary 6.3 shows that if X
is a k-space with a point-countable k-network, then so does f(X) where f is a
closed map. On the other hand it follows from Proposition 10 that p(X) need not
have a point-countable k-network in case p is an open map with compact fibers.
We also introduce another type of networks as a technical tool and study some of
their properties.
A collection v of subsets of a topological space X is called k-network if whenever
K C U, K compact and U open in X, then there is a finite 9’ C 4 such that K C Uy’ C
U. Point—countable k-networks are of special interest. For example, it is shown in [4]
that k-space with point-countable closed (i.e. consisting of closed sets) k—networks is
an image of metric space under a quotient s—map (recall that s-map is a map with
separable fibers). Since spaces with point — countable k-networks are closely related
" to quotient images of metric spaces (see [3], [4], [8], [9]) it is worth knowing what kinds
of spaces could be images of spaces with such networks under quotient maps from
particular classes. Thus it is shown in([4], theorem 7.1(e)) that perfect maps preserve
point-countable k-networks. Corollary 6.3 generalizes that results in case of k-spaces.
In this case a point-countable k-network is preserved by closed maps. On the other
hand open compact maps may not preserve such a property as shown in Proposition
10.
We use standard notations for basic operations and spaces. By (A)A.’ ((A)x)

we denote the interior (closure) of A in space X. By A(r) we denote the one-point
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compactification of a discrete space of cardinality 7. By S, we denote the space obtained
by identifying the limit points of 7 convergent sequences. R denotes the set of all
real numbers and ¢ denotes the cardinality of R. Less common notations are f(y) =
{f()lE €y} and v|ly = {€NY |6 € v} where f: X — Y is a map and 7 is a family of
subsets of X,Y C X.

All spaces are assumed to be Hausdorff, all maps to be continuous and onto.

Definition 1. Let vy be a collection of subsets of space X. v is said to be an
s—-network if whenever A # A C X there ezists z € X such that ifz € U C X, U open
thenz € £ C U, card(U NE) > Ro for some € € 7.

Definition 2. Let vy be a subspace of X, v be a network for Y. Let us say
that 4 is an exterior s—network for Y (an ezterior k—network for Y) in X if whenever
A#ACX,ACY, then there isz € X such thatifz € U, U open in X, then§ C U,
card(é N A) > Ro for some £ € v ( whenever K C U with K compact and U open in
X, then KNY C Uy’ CU for some finite y' C 7.

We will use ,pces—network“ instead of ,point countable exterior s—network“.

Proposition 1. If 5y is an s—network and f is a quotient map, then f(v) is
an s-network.

Lemma 2. Ify is an ezterior s-—network (ezterior k-network) for Y in X,
andY = X, then v is an s-network (k-network) for X .

Recall that a space X is strongly Ro — monolite if F has a countable base for
any countable F' C X. Analogously call a space X near-monolite if for any countable
F C X, F has a pces—network.

The following proposition shows some connections between notions introduced.

Proposition 3. (1) every point countable s-network is a k-network;
(2) if X is a k—space, and v is a k-network for X, then v is
an s-network;
(3) every pces-network is an exterior k-network;
(4) in k-spaces every ezterior k-network is an exterior s-
network.

Proof. (3) Let § be pces—network for Y, Y C X; we shall prove that é is an
exterior k-network for Y. Suppose K C U with K compact and U open in X and there
is no finite 8’ C & such that Y N K C U C U. Foreach z € K let {§ € §|z € £} =
{&i(z)|i € w}. Inductively choose z, € K such that z, & [J{ém(zk)|m,k < n}. Since K
is compact the set S = {z,|n € w} has a cluster point z’,s0 A = §\ {z'} is not closed.
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Thus there exist z € X and £ € § such that z € £ C U and card(§ N A) > Ro. Then
€ = £.(zx) for some n and k. However, z,, € m(zi) for n > max{k,m} contradicting
card(§ N A) > Ro.

(4) Now let v be an exterior k-network for Y, Y C X. We shall prove that v is
an exterior s—network for Y. Let A# AC X and A CY. Since X is a k-space there
exists a compact K C X such that B = KNA is not closed. Let z be an arbitrary cluster
point for B and let z € U, U isopenin X. Thenz € VC U, K'=(VNK), CU
for some open V in X. Since 7 is an exterior k-network, K’ C Uy’ C U for some finite
4" C 7. Hence card(é N A) > Rq for some £ € 4’. Thus v is an exterior s-network.

Proofs of (1) and (2) can be obtained from the proofs of (3) and (4) supposing
X =Y and using Lemma 2.

Proposition 4. Let X be a countably compact space. Suppose K C X has
pces—network y in X. Then K is a metrizable compact space.

Proof. Let 4’ C v be the subfamily consisting of such £ € v that there exists
a finite subcollection ¥” C 7 such that 4” U {£} is a minimal cover of K. By virtue of
Mischenko lemma [7], 9’ is countable. Let us prove that for any z € K and any U 3 z
open in X there is a finite 4” C 4’ such that Uy” C U, W;)_; 3z.

Let § C v consist of all £ € 4 such that z & £ or £ € U. We will use notation
&i(y) as in Proposition 1. Inductively choose § = {z,|n € w} C K as in Proposition
1. Since X is countably compact the set S has a cluster point z’, so S\ {z'} is not
closed. Since 7 is pces—network, there is a point z” such that for any V' 3 z” there is
£€7v,6CVsuch that card(éNS) > Ro. fz”" =z let U =V. If 2” # z choose U’ 3 z
and V 3 z” open in X such that U'NV = @. In any case £ € § and card(§N S) > Ro
contradicting the way the z;’s were chosen. Hence there is a minimal finite cover §’ C §
of K. Let y" = {£ € §'|E CU}. Theny”" C 4,z g C = UCGJ'\w"E‘ C is a closed
set, and K \ C C U7/, so 7' has the required property. Let ¢ consist of all finite
intersections of closures of elements of 4’; ¥ is countable. We will prove that ¥ is a
network for K. Let z € K, z € U open in X, {&]i € w} = {€ € ¥'|& 3 z}. There is
n € w such that ;. & C U. Suppose not. Then the family = = {£]i € w} U {K\U}
is countable, nested collection of closed sets because = # @ as was proved before. Since
X is countably compact there is z’ such that z’ € K \ U and z’ € § for all i € w. Since
z # 2z’ there are U’ 3 z and V 3 z’ open-in X such that U'NV = O and it follows
from what has been proved above that there is £ €  such that £ 3 z and £ C U’. But
then £ = & for some i € w and z’ ¢ £, a contradiction. )

Corollary 4.1. A countably compact space with a point-countable s-network
is a metrizable compact space.
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Corollary 4.2. A countably compact space X is nearmonolite iff it is strongly
Ro-monolite.

Remark. It may be worth pointing out that if K C X is relatively countably
compact and has pces—network, then K is metrizable and moreover if X is regular,
then K is also metrizable and compact.

Let 4 be an arbitrary collection of subsets of space X. Let us call a property P
of v a hereditary-bijective property (or simply hb—property) if for any Y C X 7|y has
the property P and for any continuous bijection f: X — Z f(v) has the property P.

Lemma 5. The following properties are hb—properties:
(1) to be point-countable (finite);
(2) to be o-point-finite;
(3) to have cardinality less than T;
(4) the cardinality of any element is less than 7;
(5) to be a cover (network).

Proposition 8. Let f: X — Y be a closed map onto Y, F C X has an
ezterior s—network y with an hb-property P. Then f(F) has an ezterior s-network
with property P.

Proof. Consider the set B = f(F) C Y for any y € B choose z, € F such
that f(z,) = y. Let G = {z,|y € B} C F. One can easily check that 7| is an exterior
network for G. We will prove that f(7|g) is an exterior s-network for f(F). Let
A # A C f(F). Since f is closed, A’ = f~}(A)N G is not closed in X. Let U’ 3 f(z)
be any open neighborhood of f(z), U = f~!(U’) and let £ € ¥ be an element of y with
the property demanded by Definition 2. One can easily check that §NG = £’ € 7|,
f(€) C U, card(é'n A’) > Ro. Hence f(7|g) is an exterior network. Now flg is a
bijection, P is an hb-property, so f(7|g) has the property P.

Corollary 6.1. Let f : X — Y be a closed map onto Y, F C X have a
pces—network. Then f(F) has a pces-network.

Corollary 6.2. An image of a nearmonolite space under a closed map is
nearmonolite. :

Corollary 6.3. Let X be a k-space with a point-countable k-network, f :
X — Y be a closed map onto Y. ThenY has a point-countable k-network.

Corollary 6.4. Let X be a k-space with a o-point-finite k-network, f : X —
Y be a closed map onto Y. ThenY has a o-point-finite k-network.
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The well-known Lashnev theorem [5] says that every closed map f: M =Y,
where M is metrizable is ,perfect mod Q, where Q C Y is a o-discrete subspace
of Y. The following example shows that ,metrizable“ here cannot be weakened to
,paracompact with a point—countable base and a closed point-countable k-network.
Thus Lashnev theorem is not valid in the class of all k-spaces with point—countable
k—networks.

Example 1. Let us recall the construction of Michael line, M L. The space ML
is obtained from R by isolating the irrational points. It is easily seen that M L is not a
o-discrete space. Now consider the set A = ML x w. Define the typical neighborhood
of the point (z,0) to be of the form:

04(z,0) = (0(z) x w) \ ({z} x (v {0})), where z € O(z) C ML is open and
all points (z,n) z € ML, n > 0 are isolated. It is easy to check that the obvious map
mpmL: A — ML is closed and not compact at each point z € M L. One can see that A
has a point—countable base and a closed point—countable k-network.

Although La%nev theorem is not true for k-spaces with point—countable k-
networks we can obtain the following particular case of it (we omit its proof).

Proposition 7. Let X be a regular k-space with a point-countable k-network
or a k-space with a point-countable closed k-network. Let f : X — K be a closed map
onto a paracompact feathery space K. Then f is ,perfect mod Q “, where Q C K is a
o-discrete set.

We omit also the proofs of the following two propositions since we are not
interested in them at present.

Proposition 8. Let X be a Frechet - Urysohn space with a point-countable
k-network y. Then for any convergent sequence S = {zn|n € W}, z, — T as n — 0©
there is a sequence SU = {Up 3 z,|n € w} of open sets such that U, — z as n — oo.

Recall that a collection {Uy|a € A, Uy € X,U, # O} of open sets is a 7-base

for X if for any open U in X there is @ € A such that U, C U.

Proposition 8. Let X be a Fréchet-Urysohn space with a point-countable
k-network. Then X has a point-countable r-base.

Corollary 9.1. An image X of a space with a point-countable base under a
closed map has a point-countable w-base.

Proof. It is easily seen that X is a Fréchet-Ursohn space. By Corollary 6.3
X has a point-countable k-network. Using Proposition 9 we obtain that X has a
point—-countable r—base.
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The following Proposition shows the property of a space to have a point-
countable k-network is not preserved by open mappings.

Proposition 10. Let X be a sequential space and card(X) < c. Then there are
M - a metrizable space, p: M — p(M) - a quotient two-to-one map and f : p(M) — X
- an open map onto X such that f~'(z) is compact for every z € X.

Proof. Assume without loss of generality that X is not a discrete space. Let
Sq¢ = {1/n|n € N} U {0} be the standard converging sequence. Since card(X) < ¢,
the set of all embeddings ¢ : Sq¢ — X has cardinality equal to c¢. Let {¢,|a € A},
card(A) < ¢ be all such embeddings. Let [0,1] = |J,e4 Qo Where Qo N Qo = O if
o #a”and Q, = {z*|n € w}and Q, = I = [0,1]. Let M = Baca(S5ga Xw)U(DzexIz)
where Sq, = Sq. M is metrizable since M is a sum of metrizable spaces. Let a relation
~ be defined as follows: z ~ 2z’ if z,2’ € M, z € Sqga X {n}, 2’ = 2} € [, (a)
Now let z ~ z’ if either z = 2z’ or 2’ = z. It is easy to check that the obvious map
p: M — M/ ~ is two-to—one map. Let f(y) =z € X if y € p(I;). We shall prove that
f is an open map. Let U C M/ ~ be an open subset of M/ ~. Suppose f(U)=F C X
and X \ F is not closed. Then there is a sequence {z,|n € w} C X \ F and z € F such
that z, — z as n — oo. Let ¢(1/n) = z,, for any n € w \ {0} and ¢(0) = z. Then ¢
is an embedding and ¢ = ¢, for some a € A. Since I. Np~'(p(I;) N U) is open in I,
there is » € w such that z% € U. Then Sgo X {n} N p~(p(Sga X {n}) N U) is open in
S¢a X {n} and thus there is k € w such that there is ¢ = (1/k,n) € Sqa X {n} such
that p(t) € U N p(Sqa X {n}). Then f(p(Sgo x {n})) 3 zi contradicting the way z,’s
were chosen.

If in Proposition 10 we take for X a sequential space without a point-countable
k-network, then we obtain an example of open s-map f:Y — X onto X whereY is a
finite-to—one quotient image of a metric space, thus providing the negative answer to
questions (10.3) and (10.4) in [4]. Unfortunately Y may be a nonregular space. The
following is an example of a regular space X such that X is a two-to—one quotient
image of metric space and there exists an open map p : X — Y with compact fibres
where Y has no point—countable k-network.

Example 2. Let T = {Tu|n,k € w,k < 2"} be the collection of closed
intervals, produced by the standard construction of the Cantor set K. let X =
K ® ®nxewTnk- Define the topology on X as follows. All points z € Thk, n, k € w
have standard Euclidean neighborhoods, as points of closed interval T,z C R. Define
the typical neighborhood of t € K to be of the form:

.....

It is easy to check that X is a sequential space which is two-to—one quotient
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image of a metrizable space. Let p: X — K & (U, zeo (7, k) =Y, p(z)=zforz € K
and p(z) = (n,k) for z € Tpix. Let Y have the topology induced by p. One can easily
check that p: X — Y is an open map and p~!(y) is a compact subspace of X for any
y € Y. Consider the family O = {p(Oo(z))|z € K} where O¢(z) = {z} U ®{Tnk|n,k €
w, € Tax}. One can easily check that card(O) = ¢, every element of O is an open
compact subset of Y, and O is an almost disjoint family, i.e. for any &;,£2 € O, &N &,
is finite. Suppose Y has point-countable k-network 4. Then there is £, € ¥ such
that £, C a, card(é, N a) > Rp for any @ € O. Since O is an almost disjoint family
€x \ K # €un \ K for o’ # a”. Thus the family {¢, \ K|a € O} is a non—countable
point—countable collection of subsets of the countable set Y \ K, a contradiction.

The following example shows that not all sequential spaces can be obtained in
the way Proposition 10 suggests (i.e. card(X) < c is essential there).

We omit the proofs of the following two examples.

Example 3. The space A((2°)%) cannot be an image of a k-space with a
point—countable k-network under a quotient map.

Although Proposition 3 closely ties point—-countable k-networks and point—
countable s—networks there are some differences between these notions. In Example 4
we discuss the preservation of the property under product operation.

It is well-known ([4]) that a product of two spaces having point—countable k—
networks has a point—countable k-networks also and it is easy to check that if X xY has
a point—countable k-networks, then there exist 4; and 72 — point—countable k-networks
of X and Y respectively such that v = {& x &|& € 71, & € 72} is a k—network for
X x Y. As the following example shows the similar proposition is not true for space
with point—countable s—networks.

Example 4. The space Sc+ X S, has no point-countable s—network. Assuming
CH the space S¢c x S, has a point-countable s—network, and for any 7v,, 72 — point-
countable s-networks of Sc and S, respectively the family {£; x &|& € 11,2 € 72} is
not an s—network.

The following simple proposition gives a sufficient (but not necessary) condition
for X x Y to have a point-countable s—network.

Proposition 11. If X xY is a k-space, X and Y have point-countable
s-networks, then so does X x Y.

It is easy to check that the space S, x Q where Q denotes all rationals has a
countable s-network and it is not a k-space.

The author wishes to thank Professor E. G. Pytkeev and Professor N. V.
Velithko for their support, useful comments and suggestions.
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