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FIRST ORDER STOCHASTIC PARTIAL DIFFERENTIAL
EQUATIONS

JAN TURO

ABSTRACT. Local and global solutions of the Cauchy problem for first order
stochastic partial differential equations are investigated. The theorems are proved
by the characteristics and the successive approximations methods.

1. Introduction. Partial differential equations with random coefficients and
related problems were proposed by many mathematicians and physicists in connection
with analysing random phenomena. Among these, random transportation equations
were studied extensively by many authors, e.g. Keller [7], Frisch [4], Ogawa (8] and
Funaki (3].

In this paper, we consider the partial differential equation of first order with a
random coefficient

" %(t,z;w) +{a(t,2) + b(t,x)w(t:w)}g—:(‘»f;“)

= f(t,z,u(t,z;w)) + g(t, z,u(t,z;w))i(t;w), t>0

with initial data

(2) | u(0,z;0) = ¢(2),

where w(t,w), t > 0 is the white noise process.

Generalized (weak) solutions of a linear partial differential equation with the
white noise as a coefficient (if b(t,z) =1, f(t,z,2) = ¢(t,z)z + d(t,z) and g(t,z,2) =
0 ) have been considered by Ogawa [8] for one space variable and by Funaki [3] (if
f(t,z,2) = ¢(t,z)z+d(t,z) and g(t,z,z) = 0) for many space variables. The particular
case of equation (1) (if b(t,z) = 0) is also the equation studied by Gikhman and
Miestechkina [6]. -



First order stochastic partial differential equations 57

Let R™ denote the m-dimensional Euclidean space with the norm |- |, and
Ry = [0,40). Set |y| = (tryy*)'/? if v is a matrix, and Dr = [0,7] x R™. Let
w(t)(t > 0) be a d-dimensional Brownian motion defined on a complete probability
space (2, F,P) and F; the smallest o-field generated by {w(s),0 < s < t} and the set
of all P-null sets.

Now, we consider the stochastic integral equation

t
u(t,z) = p(y(0;t,2)) + /0 (s, (s:t,2), u(s, y(sit, 2))) ds

t
+ /0 E{g(s, y(s;1,2), u(s, u(5:1,2))) | F.} du(s),

where y(s;t,z) is a solution of the following stochastic integral equation

(4) y(s)=z+ / a(r,y(7)) dr + / b(r, y(r)) du(r).

The second integrals in equations (3) and (4) are understood in the sense of Ito.

We can notice the close analogy between our consideration and the common
theory of partial differential equations of first order. In this sense we call the stochastic
process {y(s;t,z),s < t} the characteristic line through (t,z) of equation (1).

Recently, Gikhman [5] has studied the existence and the uniqueness of solutions
of equation (3) under the condition that the drift coefficient f and the diffusion coeffi-
cient g satisfy a Lipschitz condition with respect to the last variable (see also [6]). In
the present paper, applying the characteristics and successive approximations methods,
we prove the local and global existence and uniqueness theorems for the solutions of
(3), without assuming a Lipschitz condition in the last argument for f and g.

2. The auxiliary results. Let B(T) be the set of all functions z : [0,T]xQ —
R™ satisfying the following conditions:

(a) 2(t,+) : Q — R™ is measurable for each fixed t € [0, T7;

(b) 2(-,w) : [0,7) = R™ is continuous for a.e. fixed w € Q.

Consider B(T) with the norm || z || p(1)= { E(supo<i<T |2(t,w)[?)}}/2. 1t is easy
to prove that B(T) is a Banach space [9].

Let L?(Q2,R™) be the set of all R™-valued, mean square integrable functions
on  and let S(z,r) be the closed ball of center z with radius r in L*(,R™), that is,
S(z,r)={y € LQR™) : Ely-z| < r}.

Assumption H,. Suppose that:
1° The vector-valued function a: Dt — R™ and the matriz-valued function
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b: Dr — L(RY,R™) are measurable and a(t,-) : R™ — R™,b(t,-) : R™ — L(RY,R™)
are continuous for each fizedt € [0,T), where L(R?,R™) is the space of all linear maps
from R? into R™;

20 There is a function H : Ry x Ry — Ry, H(-,z) : Ry — Ry which is locally
integrable for each fized z € Ry and H(t,-) : Ry — Ry is continuous, non-decreasing
for each fized t € Ry and such that

Ela(t, 2)]* + E|b(t, 2)|* < H(t,E|z]*),

for allt € [0,T) and all z € S(z,7);

3° There is a function G : [0,T) x [0,4r] — R4, G(-,2) : [0,T] — Ry which is
locally integrable for each fized z € [0,4r] and G(t,-) : [0,4r] — R, is non-decreasing,
continuous for each fized t € [0,T) and such that G(t,0) = 0 and

Ela(t,z) — a(t,3)* + E|b(t,z) — b(t,2)|* < G(t,E|z — 2|?),

for all t € [0,T) and all 2,7 € S(z,7);
4% v(t) = 0 on [0,T}) is the unique nonnegative continuous function v such that
v(0) = 0 and
t
o(t) < A [ Glo,v(s))ds,
0
for all t € [0,T), where A=2(1+T)and0<Ty; <T.

Lemma 1 [10]. Let Assumption H, be satisfied. Then there is a unique local
solution y(s) = y(s;t,z) of (4).

Remark 1. Note that, since y(s) = y(s;t,z) is the unique solution of (4), y
satisfies the following group property [5], [3]:

(5) v(s;im,u(r,t,2)) = y(s;t,2),
for r € [s,t),(t,z) € Dr, = [0,T1] x R™.

3. The local existence of solutions. Let B be the set of all functions v : D x
2 — R" measurable, F;-adapted, with the norm || v ||g= {E(sup”|v(t,z,u)|’)}'/’.
B is a Banach space. Let § = S((y(0)),¢) be the closed ball of centre @(y(0)) with
radius ¢ in L?(2,R™), that is, § = {v € L}(Q,R") : E|v - o(y(0))* < o).

Assumption H; . Suppose that: ‘

1° The vector-valued function f : D xR™ — R™ and the matriz-valued function
g: DrxR"™ — L(R* R") are measurable and f(t,-): R™xR" — R", g(t,-): R™xR" —
L(R* R") are continuous for each fized t € [0,T);
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29 There is a function K : Ry x Ry — Ry, K(+,2) : Ry — Ry which is locally
integrable for each fized z € Ry, and K(t,-) : Ry — Ry is continuous, non-decreasing
for each fired t € Ry and such that

(6) E|f(t,z,2)* + Elg(t,z,2)|* < K(t,E|z|?),

forallt€[0,T) and all z € §;
3% The vector-valued function ¢ : R™ — R" is continuous.

Now, we define the sequence of successive approximations {un(t,z)} as follows:
Uns1(t,2) = @(u(01,7)) + [y flunl(s;t,z)ds
(7) + [ E{glual(s;,2) | 52} dus),

u(t,z) = ¢(y(05t,7)),

where
flunl(s;t,2) = f(s,y(s:1,2), un(s, ¥(s51, 2)))

g[un](s; t, :I.') — g(’v y(s; t, z)v un("v y("; t, z)))

Lemma 2. Let assumption H, be satisfied and ¢(y(0;t,z)) be independent of
the Brownian motion w(s),s > 0, and sup, , E|p(y(0;,2))]> < co. Then, there is a
time T such that 0 < T < T and the sequence of functions {E|un(t,2)|?},(t,z) € D
15 uniformly bounded.

Proof. It is easy to show that the integrals on the right-hand side of (7) are
well defined [5]. Now, let us note, by condition 20 of H, and Caratheodory’s theorem
[2], that the differential equation

(8) g =3(1+ T)K(t,2(t))

has a local solution with any initial value zp > 0. Let z(t) = 2(t;0,2) be the local
solution of (8) with zo > 3sup, , E|l@(y(0;t,z))[*. Now, we shall show that

(9) Elua(t,z)]* < 2(1),

(10) Elua(t, z) - p(y(0;,2)) < o,

(t,z) € Dp,n=1,2,...
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Utilizing Doob’s and Schwarz’s inequalities, conditions (5),(6), and the property
of conditional expectations [1], we get ’

Elu(tz)? < 3Elp((0;t,2) +| /0 fluol(s;, z) ds[?

w1 " E{gluol(s; , 2)| 7.} du(s)|

IA

3sup Blp(u(0it, ) +3(1+7) [ ' K(s,sup Blp(u(0:t, )1 ds,

for all (t,z) € Dr, from which, by condition 2° of H;, we obtain the existence of a time
To such that 0 < Ty < T and

2(t) - Elu(t,2)]* > 3(1+ 7) /;[K(S»Z(S)) - K(J,S&P Elp(y(0;t,2))|*) ]ds > 0

for all (t,z) € Dr, since 2o > 3sup,, E|p(y(0;t,2))|* and 2(t) is the local solution
of (8) starting with the initial point 2,. Next, since the function 2(t) is continuous
on [0,T,], set go = max{2(t) : t € [0,To]} < oo.Thus, K(s,2(s)) < K(s,qo) for each
s € [0,Ty) by condition 2° of H,. Hence, the function K(s, z(s)) is integrable on [0, Ty).
Therefore, we get a time T such that 0 < T < T, and

E|ui(t,z) - ¢(y(0;t, 2))[?

IA

2£) | * fluo)(s; t, 2) ds]?

+ 2E|/0 E{g[uo)(s; t,z) | F,} dw(s)|?

IA

20+7) [ K (s, sup Elo(u(0;t, ) ds

A

20+7) [ Kis,2(s)ds <,
0

for all (t,z) € Dyp.
Assume that (9) and (10) hold for n = k. Then, we have for n = k + 1,

Eluk+l(tv z)l2

IA

3E|p(y(0;t,2)))* + 3T/‘ E|flux](s;t,z)|* ds
()
+ 3 [ Elgful(sst, ) d
0

| .
3sup Elp(y(0;1,2))* 4 300+ T) [ K(s, Elui(s, u(sit,2))P) ds,

IA
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for all (t,z) € Dy, which implies, since zo > 3sup, . E|p(y(0;t,2))|?, that
Blusna(b o)~ 30+7) [ K(s,Blua(o, st 2)) d
< (t)-3(1+T) /o " K(s, 2(s)) ds.
Hence, by the inductive assumption,
()~ Bluna (6 ) > 301+ T) [ [K(s,2(6)) = K(o, Blun(s, (sit, 2)Plds 2 0,

for all (t,z) € Dp. Next,

Elur41(t, ) — o(y(05t,2))I

IA

2| [ fluelsit, o) dof

+ 26| [ Bolul(sit, )| F)duo)?

< 2047 [ Ko Bluats,u(sit, )7 s
< 20+7) [ Kox(o)ds <

for all (t,z) € Dp. Thus, by induction, (9) and (10) hold for all n. Since z(t) is
continuous on [0, T, there exists a real number C > 0 such that E|us(t,2)|? < C for
all (t,z) € Dy and every integer n > 0. This completes the proof of the lemma. O

Assumption Hj. Suppose that:

1° There is a function M : [0,T] x [0,4¢] — Ry, M(+,2) : [0,T] — Ry which is
locally integrable for each fized z € [0,40] and M(t,-) : [0,4¢] — R4 is non-decreasing,
continuous for each fized t € [0,T) such that M(t,0) = 0 and

(11)  Elf(t,z,2) - f(t,2,2)]* + Elg(t,z,2) - 9(t,2,3)|* < M(t, Blz - %),
for allt € [0,T) and all 2,2 € S;

20 2(t) = 0 on [0,T) is the unique, non-negative, continuous function z such
that 2(0) = 0 and

2(t) < A /ot M(s,z(s))ds

for t € [0,T), where A=2(14+T) and0< T <T.



62 Jan Turo

Remark 2. If the function M(t,2) is concave with respect to z for each fixed
t > 0, then the inequality (11) can be replaced by the following
|f(tv z,z) - f(tv z, 2)'2 + |g(t,z,z) - g(t,z,i)lz < M(t9 IZ - ilg)

for all (¢,z,2),(t,z,z) € R4y x R™ x R".
Indeed, if [M(t, z)]?/z is concave with respect to z for each fixed ¢t > 0, then by
Jensen’s inequality we get
EM(t,|z - 2) E{[M(t,|z - 2*)/|z - 2][|= - 2]}
{E[M(t, |2 - 2")1*/|2 - 21} *{E|z - 2}/
{{M(t,E|z - 2")/E|z - 21°}'/?
M(t,E|z - 2|?),

IANIN A

2,7 € §, which imples that
E|f(t,z,2) - f(t,z,5)]* + Elg(t,z,2)-g(t,z,2)]
< EM(t,|z- 2% < M(t,E|z - 2?),
for all z,z € §.

Theorem 1. Let assumptions Hy, H; and H3 be satisfied, and ¢(y(0;t,z))
be independent of the Brownian motion w(s),s > 0, and sup, . E|¢(y(0;t,2))|? < oo.
Then, the sequence {u,(t,z)} defined by (7) converges to the unique local solution of
(3)-

Proof. Let T be the time which is obtained in Lemma 2 with 0 < T < T.
Now we define the sequence of functions vy : [0, 7] — R4 by

vi(t) = sup{sup Umn(t,2) 1 m 2102 k},
z

where vpn(t,z) = E|um(t, z) — un(t, z)[%.
Since the sequence {E|u,(t,z)|?},(t,z) € D¢ is uniformly bounded by Lemma
2, we have for some positive P
(12) Vmn(t,2) < 2E(|um(t, 2)|? + |ua(t, z)|*) < P
for all (t,z) € Dp. Next, we have that

|vma(t,z) - vmn(’az)l
< E(lum(t,2) = tn(t,2)| + |tm(s,2) = un(s,2)])
X (|tm(t,2) = tm(8,2)| + [un(t, 2) = un(s, 2){)
(E(Jum(t,2) = tn(t,2)| + |um(s,2) = un(s,z)|)*)'/?
X (E(2]tm(t,2) = tm(8,2)]* + 2un(t, z) - ua(s, 2)|*))"/%.

IA
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On the other hand we get
Elua(t,z) — un(s,2)

t
2TE / | fltn=1])(7;2,2)|? dr

IA

+2E / ‘ |E{g[un-1](r;t,2) | F;}* dr

IA

21+7T) / " K(r, Elunr(r, y(rit, 2))?) dr
21+ T)IQ(t) - Q)|

for all (t,z) € Dy and all integers n > 1, where Q(t) = fJ K(r,2(7))dr, and 2(t) is the
local solution of (8). Thus we get for some positive D

IA

(13) |omn(t,2) = vma(s,2)| < DIQ(t) - Q(s)|'/?

for all m > n > 0 and (¢,z),(s,z) € Dp. From (12) and (13) we have
0<wu(t)< P

and

vk (t) — vi(s)| < DIQ(t) — Q(s)|*/?,
for all integers k > 0 and t,s € [0,T), which implies by Ascoli-Arzela’s theorem that
there is a subsequence {v(;)(t)} which converges uniformly to some continuous function
v(t) defined on [0, T).
Now, since m — 1 > n —1 > k(l), by condition 1° of H3 we obtain for m > n >
k(1 +1),

Eltm(t,z) - un(t, z)|?

26 [ lumer)(81,2) = flunoa)(s:t,2)] ds]?

mn(t, Z)

IA

+ |/o E{(g[tm-1](8;t,2) = g[un-1](s; t,2)) | Fo } du(s)|?)
< A [ Mo, Blumos(s (538, 2)) = (s, 3(s58,2)) s
S A/o M(s. v,,(,)(s)) d.s,

for all (t,z) € Dy, where A = 2(1+ T). Thus

vk(,“)(t) < A/o M(J, v,,(,)(a)) ds, t€ [O,ﬂ
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Thus, by the Lebesgue dominated convergence theorem and the continuity of M(t,u)
in u for each fixed t € [0,T) we have

v(t) < A/o' M(s,v(s))ds, t € [0,T).

Hence, by condition 2° of Hj, we obtain that v(t) = 0 on [0, 7).
Now, form > n > k(I+1), applying Doob’s martingale inequality and Schwarz’s
inequality we obtain

E( sup |“m(tvz)_“n(t’z)|2)
(t,z)€Dy

< 2B(sup| / (Flam-1)(55t,2) = fluna)(s;t,2)) ds?

+sup| / E{{glum-1)(5;1,2) = g[un-1)(s;1,2)]| F2} du(s)]?)
T

<2(4+T) /o M(s,5up Eltm1(8,2) — tn-1(s,2)[?) ds

T
<24+T) /0 M(s, vqpy(s)) ds — 0

as | — oo, which imples that the sequence {u,(t,z)} is a Cauchy sequence in the
Banach space B. Therefore, there exists a stochastic process u(t,z) such that

E(sup |un(t,z) — u(t,z)|>) = 0

as n — 0o. As usual we can prove that u(¢,z) is a local solution of (3).
It remains to prove the uniqueness. Suppose u(t,z) and z(t, z) are two solutions
of (3) on Dp. Then, we get

supE|u(t,z) - 2(t,z)]* <2(1+ T) /‘ M (s,sup E|u(s,z) — 2(s,z)|?) ds
z 0 Tz

for all ¢t € [0,T). This and condition 2° of Hj implies that E|u(t,z) — 2(t,z)|? = 0 for
all (t,z) € Dp. This shows the uniqueness of the local solution, and the theorem is
proved. O

4. The global existence of solutions. Now, we shall present the existence
and uniqueness of a global solution of (3). '

Theorem 2. Let:
1° Conditions 1°—3° of H, and 1° - 3° of H; be satisfied with r = oo,
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o = oo and T = 0o, respectively;

2° For any fized T > 0, the differential equation (8) has a global solution for
any initial value zo > 0;

3° For any fized T > 0, conditions 4° of Hy and 2° of H3 hold;

4° o(y(0;t,z)) be independent of the Brownian motion w(s),s > 0, and
supt,: El‘P(y(O; tv z))|2 < oo.

Then, the sequence {un(t,z)} defined by (7) converges on any subset D of
R, x R™, to the unique solution of (3).

Proof. Let S be the set of times 7 such that the sequence {un(t,z)} converges
on the interval [0,7). Let 7, = sup{r € §}. By Theorem 1 we have that r, > 0.
Suppose now that 7; < co. Then we can take a time T such that r; < Tp < co. Thus,
by Assumptions 1° and 2°, we have a solution z(t) of (8) with T = Tp which exists
on [0,Tp), and the estimate (9) holds on D,. The remainder of proof follows as in
Theorem 1, replacing T by T,, which completes the proof of Theorem 2.

Corollary. For the stochastic equations (3) and (4), suppose that:
1° There are continuous, non-decreasing and concave functions a; : Ry — Ry
with a;(0) = 0,j = 1,2, and A; € L}, (R4,Ry) such that
la(t, z) - a(t, 2)[* + |b(t, 2) - b(t, 5)|? < M(en(lz - 2%),
U(tv:vz) - f(t,z,i)l’ + |g(tv3v z) - g(t’:’i)l < Az(i)a:(lz - §|2)v

for all (t,z,2),(t,z,2) € Ry x R™ x R";
20 Ia(-,O)I,Ib(-,O)I,If(-,z?O)I,Ig(-,x,O)I € leoc(kﬁ-’k'#)v z€ R";

® [ (/aw)du=co, =12
o+

4° Condition 3° of H, is satisfied and sup, . E|@(y(0;t,2))* < 0.

Then,on any finite interval [0, T, there are unique solutions of (3) and (4).

Proof. Since a;(u), j = 1,2, are concave on Ry, there are positive real num-
bers ¢; > 0,d; > 0, j = 1,2, such that aj(u) <cju+d;,j=1,2.

From condition 1° we have

la(tv z) - d(t,O)l’ + |b(t»z) - b(ts 0)|2 < Al(‘)al(lzla)v

and
1f(t,z,2) - f(t,2,0)]* + |g(t, z, 2) — g(t,2,0)]* < Aa(t)aa(|2[?).

Thus we obtain that

la(t, 2)[? + [b(t, 2)]? < 2(la(t, z) — a(t,0)[* + [b(t, z) — b(t,0)[” + |a(, 0)|* + |b(t, 0)|*)
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221(t)aa(12]) + 2(Ja(, 0)[ + 1b(t,0)*)
2e1 0 (t)|21? + 2e1 (1) + 2(Ja(t, 0)* + [b(t, 0)[*)
Bu(®)l=l* +m(2),

IAIA

and
|f(t,z,2)]* + l9(t, 2, 2)|* < Ba(t)l2]* + ma(2),

where 8;(t) = 2¢;A;(t), 11(t) = 2e1A1(2)+2(|a(t,0)[2+[b(2,0)|?), and 72(t) = 2c2ra(t)+
2sup(|f(t,z,0)|* + |g(t,z,0)|?) are locally integrable with respect to t € Ry.
E

Next, set H(t,u) = By(t)u + 1(t),and K(t,u) = Ba(t)u + 72(t), v 2 0, for all
t € Ry. Then, since H and K are linear in u, condition 2° of Theorem 2 is satisfied
with functions H and K, respectively. Obviously the rest assumptions of Lemma 1 and
Theorem 2 are satisfied. Therefore, by Lemma 1 and Theorem 2, we get the desirable
conclusion which completes the proof of the corollary.

Remark 3. If a;(u) = u(u > 0) and A;(t) = L; (L; > 0), then condition 1°
implies a Lipschitz condition [5].
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