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HERMITIAN-LIKE NATURAL CONNECTION ON AN ALMOST
CONTACT METRIC MANIFOLD

MILEN J. HRISTOV

ABSTRACT. On an almost contact metric manifold we introduce a natural con-
nection which is an extension of the Hermitian connection on an almost Hermitian
manifold. The objects, corresponding to such a connection, are described in terms
of complex frame fields.

On an almost Hermitian manifold there exists a remarkable natural connection,
i.e. a linear connection, preserving the almost Hermitian structure, the so called Her-
mitian connection [1,2]. In case of an almost contact metric manifold the class of the
natural connections has been introduced in general by G.Ganchev, V.Alexiev [2]. In the
present paper we deal with geometrically arising natural connection, whose restriction
to the contact distribution coincides with the Hermitian connection. Such a connection
we call a Hermitian-like natural connection. Analogously to [3,5], this connection and
the objects related to it are described in terms of complex frame fields.

1. Preliminaries. Let M be a 2n+ 1-dimensional differentiable manifold with
an almost contact metric structure (¢,£,7,g), where ¢ is a tensor field of type (1,1), £
is a vector field, n is a 1-form, g is a definite metric tensor field, such that

pl=-id+n®& @(€)=0, n€)=1, g=gop+n®1.
On such a manifold arise the operators h = —¢? v = n® £, such that
h(T,M) = Kern,, o(T,M) = Imn, and T,M = h(T,M) & v(T,M) — orthogonal

and U(n)x l-invariant, p € M. The complexification T; M of the tangential space T, M
is decomposable as follows [5]:

c 10
T,M = DP @D:' ® Imn,,
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where D}%(D}') is +i(—i)-eigenspace of the operator ¢, and Dg = D}° & DY is the
complexification of the contact distribution D, = Kern,,p €M. For any orhtonormal
basis {eq,pea,€laer, I = {1,2,...,n} of T,M, the vectors Z, = e, — ipe, (resp.
Zs = Za), a € I form a basis for DI°(D9'), Imn, is spanned by Z, = £ and so
T;M (resp. Dy) is spanned by the complex frame fields Z4, A € TUTU I, (resp.
Zs, a€ IUI), where I = {1,2,...,7n} and I, = {0 = 0}. Unless otherwise stated,
Greek small letters will be run through the index-set /, Latin small- through U I and
Latin capital- through TU TU I,.

The structure (@, £,7,9) is said to be normal if the tensor field N = [, ¢] +
2dn ® £ of type (1,2) vanishes identically, where [, ¢] is the Nijenhuis tensor field,
formed with

¢ : (e, 9l(z,y) == [pz,0¥] - ¢lpz,y] - ¢lz, 0] — ¥*[z,1], z,y € T,M.

In that case D1°(D?'), is an involutive distribution [3]. The tensor field of type (0,3)
corresponding to N will be denoted by the same letter: N(z,y,z) = g[N(z,y),z],
z,y,2 € T,M. When the structure (¢,£,1,g) is of Hermitian type, then N = 0 and
dn = 0 are valid and for any point p € M there exists a local complex coordinate
system {z* = 2% + iy®, 2%, t}qer, such that D)° = span{Zq = 8/92% = 8a}ae1, D' =
span{Zs = 0/02% = 5} ,¢1 and Z, = £ = /0t [5)].

Let & : &(z,y) = g(z,¢y), z,y € T,M be the fundamental 2-form on M, V be
the Levi-Civita connection of the metric g and F = —V®. The properties, formulated
in the following Lemma are well known [2,5].

Lemma 1. Let M?"t1(p, £ n,g) be an almost contact metric manifold. Then
for all z,y,z € T,M the following equalities are true:

(1) (Vo)op=—po(Vp)+ (V)@ &+ (Vo) m

(2) F(z,9,2) = 9((Vz9)y, 2] = —=F(z,2,y) = =F(z,9y,92) + [n A (V) 0 ¢](y, 2);

(3) 2dn(z,y) = F(z,¢y,£) — F(y, z,£);

(4) 3d®(z,y,2) = — F(z,y,z), (G — cyclic summation);

g
(zy2)

(5) N(.‘L‘, ¥,2) = "3d¢(¢zv v,2)+ 3d¢(w,1,l) + 2F(zv yv¢3)+
+2[" ® (V" - 2d17)](2, sz)-
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2. Hermitian-like natural connection.

Definition 1. [2,4] A linear connection D on an almost contact metric manifold
M(p,&,n,9) is said to be naturalif Dg =0, De = 0.

If D is a natural connection, then D§ = 0 and D7y = 0 are also valid [2,4].

Using (1), it is easy to check the following

Lemma 2. Let M(p,€,n,9) be an almost contact metric manifold. The linear
connection b, defined by

° 1 1
D2y = Vzy = 50(Vzp)y + [(Van)yl§ — 57(¥)Vez,

z,y € TyM is natural.

We shall call b a basic natural connection.

Theorem 1. Let M(p,€,n,g) be an almost contact metric manifold. For any
R-valued differentiable functions A, u on M the linear connection B‘, defined by

A u o A
(6) 9(D =y, 2) = 9(D=zy, 2) + 7[3d®(pz, 0y, 2) + 3d®(pz, hy, hz)]+

En(2)[3d9 (&, oy, hz) — 349 (&, hy, v2)),

z,y,z € T,M 1is natural.
Proof. For any linear connection D on M there exists a uniquely determined

tensor field Q of type (1,2) such that D = 5 + Q. Using Definition 1, it is clear that
D is natural iff the tensor field of type (0, 3), corresponding to Q denoted by the same
letter: Q(z,y,z) = g[Q(z,y), 2], has the symmetries

Q(.’t, yvz) = -Q(z, z, y) = Q(Iy *P!h‘r”z),

(7

Q(zaf’2)=Q(1.y»f)=0, 1‘,y,2€T,M.
It is well known that Q is decomposable, as follows
(8) Q =hQ+vQ,

where hQ and vQ are mutually orthogonal with respect to the inner product in ®3T;M
induced from g and invariant under the action of the standard representation of the
Lie-group U(n)z1 in ®3T;M. The defining conditions for the factors are:

(9) (hQ)(z,v,2) = Q(hz, hy,hz), (vQ)(z,y,2) = n(z)Q(&, hy, h2),

3 Cepamxa 2/94
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z,y,z € TyM.

Now (7) implies that the C-linear extension of hQ(vQ) on T;M is uniquely
determined by the essential (i.e.nonvanishing in general) components Q.s5(Qos5) and
also its conjugated ones.

The exterior differential d® of the fundamental 2-form is a geometric object on
the manifold having analogous to (8) decomposition: d® = h(d®) + v(d®), where

h(d®)(z,y,z) = d®(hz,hy, hz),

v(d®)(z,y,2) = n(z)d®(£,y,2) — [n A dB(&, z,%)](v, 2)-

(here d®(£,z,+)y = d®(£,z,y)). The essential components of h(d®) are ®ap5, Papy
and of v(d®) — &,35, ®,3,. Therefore in the set of all tensor fields of type (0, 3), having

Ap
the symmetries (7) there exists a 2-parameter family Q such that

Au 3. Al 3.
(10) Q aBy = Eleaﬂq, Q oB5 = E'I“I’Oﬂ‘h

where A and p are R-valued differentiable functions on M. Linearising the equalities
(10), substituting a, 3,7 with z —ipz, y—ipy, 2 — i@z respectively, using (7) and taking
the real parts, we get

A A
hQ(z,y,2)= ;[3d‘1’(w,vy,w) + 3d®(pz, hy, h2)),

A,
@ (6,3,2) = L(349(€, ¢y, hz) - 34%(¢, hy, ¢2)]

Substituting these expressions consequently in (9),(8), we get the 2-parameter family
(6) of geometrical natural connections on M.
The next Lemma follows after direct computation.

Lemma 3 . Let M(y,£,n,g) be an almost contact metric manifold. The torsion

Apu A p .
tensor field T, corresponding to a geometrical natural connection D, satisfies

A u

¥ (2,0,2) = LF(r,0,2) — 3F(0,2,92) + 30 A (Tan)zl(z,9) + 2dn(z, v)n(=)+

A
71640z, 0y, 02) + 3d(pz,hy, hz) + 3d®(hz, py, hz)|+

2—‘-{11 A [3d®(£, %, hz) — 3d® (€, he, p2)]}(z,y),
z,y,z € TyM.
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Remarks. 1) 5 = 015
2) If M(p,€,1n,9) is a Sasakian manifold, then N = 0, & = 2dy are valid and

. LA . .
hence any geometrical natural connection D coincides with Tanaka’s connection, whose
torsion tensor field satisfies [2,4)

T(hl’, hy’ Z) = df](h.’t, hy)'l(z)»
T(& hz,hy) + T (€, 0z, 0y) = 0.

1,0
3) The restriction of the connection D to the contact distribution D = Kern, on
which (¢, g) is an almost Hermitian structure, coincides with the Hermitian connection,
whose torsion tensor field satisfies the so called “pure” property [1,3]:

T(hz,hy,hz) + T(pz,py,hz) = 0.

Lemma 4 [2,4]. Let M(¢,£,1,9) be an almost contact metric manifold. For
any natural connection D on M with torsion tensor field T, the nezt equalities are
valid:

a) 2dn(z,y) = n(T(z,y)) = T(z,y,€);

b) 3d®(z,y,2) = T(z,y,92) + T(y,2,02) + T(z, 2, py);

c) N(z,y,2) = T(z,y,2) - T(¢z,9y,2) - T(pz,y,92) = T(z,0y,$2),2,y,2 €
T, M.

Definition 2. A natural connection D on an almost contact metric manifold
M(p,€,n,9) is said to be Hermitian-like natural connection if the torsion tensor field
T, corresponding to D is “it pure”, i.e. the next equalities are valid:

(ll) T(hz,hyahz)‘i'T(SOIN’y,hZ) =0,

(12)  2[T(& hy, hz) + T(&, ¢y, 92)] = T(hy, hz,§) + T(py, 92,€),2,y,2 € T, M.
Theorem 2. On any almost contact metric manifold M(p,£€,1,g) there ezists
uniquely determined Hermitian-like natural connection D. The defining conditions for

D and for the torsion tensor field T corresponding to D are respectively

0 1
9(D:y,2) = g(D:y,2) + ;[3d¢(w.¢y.w) + 3d®(pz,hy, hz)]-
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- if)(z)[3d<b(£, vy, hz) — 3d®(&, hy, 2)),
T(2,4,2) = 5F(2,4,02) = 3F(3,2,02) + 3{1 A (Van)2](2,3) + 2dn(z, v)n(2)+
+1[649(pz, 0y, pz) + 3d8(pz, hy, hz) + 3db(hz, py, hz)|-

1
— 7 (1A [3d®(E, px, hz) — 3d(&, he, 02)]}(2,v),
z,y,z € T,M.
1,-1
Proof. We shall show that D = D . Using Lemma 3 and (2), (4) we compute

A

A
T (hz,hy,hz) + T (¢, y, hz) =

1 1 1 1
= 5 F(hz, hy, pz) — SF(hy, hz, p2) + S F(pz, 0y, 02) — 5 F(py, oz, 02)+

A A-1
+3[3d®(hz, hy, p2) + 3d®(pz, ¢y, 92)] = —5—[3d®(hz, hy, pz) + 3d®(pz, ¢y, p2)]

and so (11) is valid iff A = 1.
Further Lemmas 3,4 and (2),(3),(4) imply

2T (€, hy, hz) + T (€ 0y, 02)] =
(Y4 w)[(Vaymhz + (Vanhy + (Veymez + (Veun)pyl+

A A u
T (hy,hz,£) + T (¢y,¢2,§),
and hence (12) is valid iff 4 = —1. From Lemma 3 we express the Hermitian-like torsion
1,-1
tensor field 77 . O
3. Characterizations of the Hermitian-like natural connection in
terms of local complex frame fields. We shall express the uniquely determined

C-linear extension of the Hermitian-like natural connection and of the corresponding
torsion tensor field, denoted by the same letters, in terms of the complex frame fields

{ZA}Aelulul.~

Lemma 5. Let M(p,£,1,9) be an almost contact metri¢ manifold. In terms
of the complez frame fields {Z A} 4¢ 1,101, we have:

i) the esseniial components of the Hermitian-like natural connection DiB =

Dga satisfy
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a) D}, =T),+ 319,
b) D} =T3, — 3i®},,
¢) D)5 = T — 3i®] 5, where Ty are components of the Levi-Civita con-
nection;
i1) the essential components of the Hermitian-like torsion tensor field Typc =
—Tgac = Tigc satisfy
a) Topy = %Nap,,,
b) Tapy = 3i®aps,
C) Toﬁq == %Nop-y,
d) Tops = NBa»
e) Taﬁo - 21705 = %Naﬁo’
f) Taco = 2Ma0 = Naco-
The next Lemma follows immediately.
Lemma 6. Let M(p,£,7,9) be an almost contact metric manifold of Hermi-
tian type. Then:
i) the essential components of the Hermitian-like natural connection are D] 5=
9"’3agﬂa;
i1) the essential components of the Hermitian-like torsion tensor field are T,p5 =
3i®aps -
Further, let K = [D, D] — Dy be the curvature tensor field of type (1,3), corre-
sponding to D and let the curvature tensor field of type (0,4) be denoted by the same

letter:
K(z,y,2,u) = g[K(z,y)z,u), z,y,2,u€ T,M.

We shall call K a Hermitian-like curvature tensor.
The C-linear extension of K has the properties:

K(z,y,zu) = -K(y,z,2,u) = - K(z,y,u4,2) = K(z, ¥, 2, ),
(13) K(z,y,¢z,0u) = K(z,y,2,u), 2,u€ Dj,
K(SPl',SO!l,Z,“) = K(lyy»l'“)» z,y € D;v

K(z,y,2z,§)=0.

Lemma 6 and (13) imply
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Lemma 7. Let M(p,€,n,9) be an almost. contact metric manifold of Hermi-
tian type. Then the essential components of the Hermitian- like curvature tensor are

K .55 Kop,s and satisfy
Kops = —0a059.5 + 9°%(0a945)(059)5) =
3. 3 _
= Ragns + 5il(Vad®) s, — (V5d®)ars] = 5[92,05% 15 — 2750a®al,
K opy5 = 00059.5 — 9%(095)(059+5) =
. 9
= —2R°ﬂ'73 - 3t(Von)ﬁg - -4’2;3‘1’»,3,

2

where Rapcp are components of the Riemannian curvature tensor on M.,

Definition 3. A linear connection D on an almost contact metric manifold
M(p,€,1m,9) is said to be a characteristic connection if D is a symmetric connection,
preserving the structure tensor field ¢, i.e. T = 0, Dy = 0 are valid identically.

It is well known that for any linear connection D with a torsion tensor field
T, the connection D = D — %’1-' , associated with D, is a symmetric linear connection
having the same geodesy as D.

Theorem 3. Let M(p,£,1n,9) be an almost contact metric manifold. The
connection 1.), associated with the Hermitian-like natural connection D on M, is a

characteristic connection iff M(p,&,1,9) s of Hermitian type.

Proof. Let D = D — 3T be a characteristic connection. This is equivalent to
(14) T(z,¢y,2)+ T(z,y,92) = 0.

In terms of the complex basis {Z4}s¢rurus, (14) implies that T,p5 and Topy are the
essential components of the C-linear extension of the Hermitian-like torsion tensor field
T. Lemma 4 and Definition 2 imply Togs = 3Tgs50 = 15 = 0. Now Lemma 5 ii) implies
the vanishing of the essential components of N and dn, i.e. M is of Hermitian type.
Conversely let M(p,€,7,¢9) be an almost contact metric manifold of Hermitian
type. Lemma 6ii) implies the vanishing of the components T4g, and T4g.. After the

usual linearization one can obtain (14) and hence D is a characteristic connection. O
In terms of local complex coordinate system on an almost contact metric man-

ifold of Hermitian type, the essential components of D satisfy

-y 3 X
Dag = T35 = D3 = 51905 = 67" 0agps.
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