Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica

Bulgariacae mathematicae
publicationes

Cepauka

beiirapcko MareMaTu4ecKo
CIIKCaHue

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on
Serdica Bulgaricae Mathematicae Publicationes
and its new series Serdica Mathematical Journal
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

SERDICA — Bulgaricae
mathematicae publicationes
20 (1994) 120-132

FLEXIBLE PROBLEM SOLVING FOR INTELLIGENT
TUTORING SYSTEMS WITH TRIPS

HRISTO PETKOV, DANAIL DOCHEV

ABSTRACT. This paper describes the aspects of flexibility and explicitness of a
system called TRIPS (TRIgonometry Problem Solver) intended to be used for the
purposes of Intelligent Tutoring Systems (ITS).

Explicitness demands presenting the knowledge from the problem domain in
details, clearly and fully expressed in an obvious form. Explicitness includes also
the requirement for the solution to be apparent on the basis of explanations, com-
prehensible for the user. The flexibility of the Domain Expert implies providing
multiple reasonable solutions as well as the ability to implement different teaching
strategies with the Domain Expert.

The main objectives of the procedural knowledge representation in TRIPS is
to assure opportunities of making the solutions provided by TRIPS explicit and
suitable for educational purposes.

The approach has been used to construct performance models of how the Teach-
ing Expert of an overall ITS with conventional architecture actually executes the
skills that are to be tutored, implementing different teaching methods.

1. Basic Architectural Issues. This paper presents a new view of problem
solving, motivated by flexibility and explicitness for the purposes of education. The
problem solving aspects are discussed in the context of an experimental program called
TRIPS (TRIgonometry Problem Solver).

TRIPS is a new improved version of the T-TUTOR (Trigonometry Tutor), (1],
(2], (1987), experimented in the domain of high school level trigonometry and it is
intended for implementation in an Intelligent Tutoring System (ITS).

TRIPS has been developed in a logic programming environment of ZPROLOG
v. 5.0, a product of the Institute of Informatics, (3], [4], (1989). A detailed description
of the domain knowledge conceptualization and its realization in PROLOG is provided
in [5).

Let us consider a conventional ITS, developed on the basic principles as pre-
sented in [6] and [7] and later on refined in [8]. The basic architectural presupposition

Flexible Problem Solving for Intelligent Tutoring Systems . .. 121

is that the overall ITS consists of five expert modules: Domain Expert, Teaching Ex-
pert, Cognitive Expert, Environment Expert and a Psychologist. In the present paper
we shall constrain this architecture to the the Domain Expert and shall lay down the
foundations of some of the issues, concerning the Teaching Expert. Similar constraints
for research purposes can be seen in [11], [12] and [13]. TRIPS is the Domain Expert
and draws inferences, while the Teaching Expert coupled to TRIPS (TET) uses these
inferences (called solutions) and applies different teching strategies over them.

TRIPS serves three roles in this overall system:

e it solves the problem step by step;

e it records the inference of the solution explicitly;

e it provides explanations on that solution;

e it functions as a cash for all the inferences made over a given domain problem.

The Teaching Expert TET performs the following functions:

¢ makes decisions for applying a specific teaching strategy;

o uses the data from the solution provided by TRIPS in order to implement the
chosen teaching strategy;

o generates appropriate tests for the specific domain problem and for the se-
lected teaching strategy.

2. Knowledge Representation in TRIPS. The general idea used in the
knowledge representation in TRIPS is that the process of domain problem solving
involves a set of procedures detached as procedural knowledge,[9]. The rewrite rules,
the methods and the strategies in TRIPS are such procedures.

A rewrite rule is an elementary procedure designating a specific transition in
problem solving motivated by a specific domain formula. The rewrite rule makes the
transition by substitution of one trigonometric structure in a trigonometric expresion
with another, equivalent to it.

Knowledge, specific for the domain under consideration is used to classify the
rewrite rules into transformations (in TRIPS such transformations are - solving brackets
(SB),arithmetic simplification (AS), trigonometric simplification (TS), arithmetic de-
composition (AD) etc.). The transformations are transitions motivated by the trigono-
metric formulae but grouped according to the procedural processing.

Other procedural knowledge concepts are the method and the strategy. The
method is a set of transformations and a finite set of knowledge based rules for applying
these transformations. The method is a specific way of achieving a specific goal or a
subgoal. An example of a method for simplifying a trigonometric expression is given
below:

Method for Simplification by Solving brackets
e a set of transformations — AS, TS and SB.

122 Hristo Petkov, Danail Dochev

e a set of rules:

o Apply TS always when possible.

e Apply AS only when TS cannot be implemented.

e Apply SB only when no other transformation is possible.

o If no transformation is applicable then go to an end check.

The strategy, on the other side is a domain specific procedural skill for solving
a given class of problems on the basis of applying a method or a set of methods.

The formulation of a strategy concept in the procedural knowledge provides the
opportunity of using different methods to achieve one and the same goal or subgoal in
a given strategy. Thus different reasonable alternatives of a solution are afforded.

Hence for example if M is the set of the different methods for presenting a
trigonometric expression in the form of multipliers, and the different methods of this set
are indexed i = 1,2,..., M; N-the set of different methods for simplifying a trigometric
expression (k = 1,2,...N); P the set of different methods for decomposition into a
product of multipliers (I=1,2,..P) then an exemplary strategy for solving trigonometric
equations could be as follows:

o The set of methods - m; € M, n, € N, p; € P.

o The set of procedural rules:

IFm;e M& ... THENn € N;IFn, € N&...THEN p; € P ...For example
the strategy of simplifying domain problems (those problems are solved with applying
of only one method) may be as follows:

An Ezample of a Strategy:

® The set of methods - m; € M, n, € N,p € P...

o The set of heuristic procedural rules:

o If there is more than one method left choose and apply method m; € M on
the basis of an estimate. (In TRIPS for example as such an estimate has been used the
logical strength of the metaoperator. One and the same set of preconditions activates
more than one metaoperator, and the greater the number of the operators included in
a metaoperator, the greater its logical strength is.)

* The metaoperators with a better estimate in terms of the final goal (greater
logical strength) are tried earlier.

o If a method succeeds, then compare it with the remaining methods by
using a predefined bundle of indicators. (A method succeeds when the goal or the
subgoal it is applied for is achieved. As a bundle of indicators is used the number of
steps in a solution. The better steps (the steps which lead faster to the goal or which
resolve a conflict) should be carried out earlier etc.).

o If only one method can be applied, do it unconditionally.

3. Solution and its Evaluation. TRIPS uses the state space paradigm for
defining the domain problems. In the context of TRIPS a solution can be defined as
follows:

Flexible Problem Solving for Intelligent Tutoring Systems . ..

S1 |Begin

Initial state and
52 strategy

l

S3 | " all the applicable

TRIPS chooses on K‘mond.
s

——

s4 Conflict resolution
method activated
LS Yes
No Is the chosen MOp
logically the
strongest
L6
Yes
No Is there more
than one MOp-s with
cqual No. of Op-s
7 Heuristic evaluation

sg | Arrange the MOp-s
into an open list

Pick up the first
$9 MOp from the OL
S10a
MOp
Call the MOp .
S10 algorithen algolntltn
‘_ Return
|
L1l S10b
Yes /' Can TRIPS solve the \ No
problem with this
metaoperator?
Write this MOp into
S13 the clocedc:fst
S12
A procedure for
evaluation of the
solution is called
L14
No Is the MOp b
overgenerated?
Pick up the weakest
S15| logically MOp covering
that solution

S16 E‘J_;]

Fig. 1 An Example of a Strategy Algorithgm.

12

124 Hristo Petkov, Danail Dochev
s1 [Begin] [
S19 Reject this
| MOp and choose
$2 | Assigned list - AL the next
|
T - No
L6
$4 | Open list- OL Am an Op
1
Yes
No
OL=0?
S5 |Arrange the Op-s in OL 14
-1 S15
L7 [Hi is that
Yes this is the sol.
No Are the reverse I
Op-s in OL No Yes
4 there eval. <eval(sol.)
S10
Apply the reverse
Apply the most
S8 | PPy the operators Yes
informative Op Are there Op-s
for backtrack?
9 | Next step Form the ML
s12 Conﬂll::tt open
Accept this ‘____
solution

[om]

Fig. 2 An Example of a Metaoperator Algorithgm.

Flexible Problem Solving for Intelligent Tutoring Systems . .. 125

e The solution is presented as a set of states (lines); L, = 1,2,...,L; set of
operators (transformations), accomplishing the transition from one state to another;
T,t=1,2,...,T; and a set of means-ends rules for applying the transformations in a
given sequence.

In this paradigm a problem can be defined by its initial state the control strategy
for achieving the goal state and the goal state itself. Depending on the assignment there
exist different types of problems.

An example of a problem definition in TRIPS is given below:
Given:

{initial state} 2 — sin ?a + cos ?a + cos a(tga + ctga)

{control strategy} — Simplify the expression

Find out: {goal state} — The simplified expression (not known).

To solve this problem TRIPS will use the example strategy algorithm and the
metaoperator algorithm, given on Fig. 1 and Fig. 2 respectively.

A general principle when developing a knowledge based system is to separate
the knowledge base from the inference engine and that the knowledge should be rep-
resented in a uniform manner. This principle is violated in TRIPS by implementing
metaknowledge (the strategy and the metaoperator algorithms) over the logical infer-
ence which provides a greater flexibility of the problem solving machine.

To evaluate a solution, no matter offered by the student or by the system,
specific metrics should be implemented so as to estimate the behavior. In TRIPS,
when solving a problem for simplifying a trigonometric expression the following metrics,
based on three component vector V(A,T,U), has been introduced, where A is arithmetic
simplicity, T — trigonometric simplicity and U - uniformity. The arithmetic simplicity
is the number of monomials in the expression, taken with some factor.The trigonometric
simplicity is calculated by assigning some relative values to the trigonometric terms.
The constants, sin and cos are taken as a basis, and the remaining ones are assigned
in respect to that basis. The uniformity is the number of the different terms in an
expression. An example of a solved problem by TRIPS is given below:

Example 1:
1. 2 —sin ?(a) 4 cos ?(a) + cos (a) * (tg(a) + cos (a))

The heuristic evaluations of this expression are: Ag = 4; Tp = 7; Up = 5;
Vi = 90
0o — .
And the metaoperators, fired at that step:

126 Hristo Petkov, Danail Dochev

fired [Mop,,, Mop,, MOp,]

; assigned list [TS, AS, SB]

assigned list [TS, AD, TD, SB, AS]
contradictory list [(TS, TD), (AS, AD)]

assigned list [TS, TD, AS, SB]

This is step S3 from the fired strategy algorithm on Fig. 1. The metaoperators
are chosen by preconditions.

The lists are data structures, defined in the following way:

e assigned list (A) - this list includes all the transformations, currently activated
for solving the problem;

o contradictory list (C) - contains pairs of a transformation and its reverse
transformation;

e open list (OL) - this list includes all the transformations, applicable to the
current line of the solution;

e closed list (CL)- a list of the transformations which have not been used by
some reason;

e applied list (AL) - contains the applied transformation;

e milestone list (ML)- a list of transformations which are reverse to the ones
applied already and which cannot be applied until the conflict open list is empty;

e conflict open list (COL) - a list of transformations which are the reason of
applying a reverse transformation.

The list data structures of each transition is called justification. If J is the
set of all the justifications for a given problem (contains justifications of all the steps
from all the solutions of that problem), then J : ji1,j12,..-Jin(1); J21,7225---J2m - -
Jq1sJq2y - - - Jgp Where the first index of the justification corresponds to the transition in
a specific solution and the second index indicates the alternative solution called variant.

On the next step of the algorithm the metaoperators are arranged in accordance
with their logical strength in the metaoperator open list (steps S4, L5, L6, S7 & S8 in
the strategy example algorithm). In our case this is the list [MO,25, MOp31, MOpao].
The corresponding rule from the strategy is to apply the better earlier. The logically
strongest MOp25 is the first one of the metaoperator open list, used in order to solve
this problem.

The operators, associated with MO,35 are:

MO,3s — [TS,AD,TD,SB,AS]; C — [(TS,TD),(AS,AD)]

The possible choices at this step are:

A) apply AD — 1+ 1 —sin?(a) + cos?(a) + cos () * (tg(a) + cos (a))

B) apply TD — 2 — (1 — cos ?(a)) + cos ?(a) + cos (a) * (tg(a) + cos(a))

Flexible Problem Solving for Intelligent Tutoring Systems . .. 127

C) apply SB — 2 —sin ?(a) + cos ?(a) + cos (a) * tg(a) + cos (a)?

D) apply TS — 2 —sin?(a) + cos ?(a) + cos () + (sin (a)/cos (a) + cos (a))

The metaoperator algorithm is activated. The heuristic evaluations are as fol-
lows: Agp = 5; Tap = 7.5; Uap = 5; V}D =106.25 # Arp = 4; Trp = 7.5; Urp = 4;
V‘IZ'D = 88.25 # Asp = 5; Tsp = 7.5; Usp = 5; V3g = 106.25; # Ars = 4; Trs = 1.5;
Urs = 5; Vg = 97.25.

When executing the steps S2, S3, S4, S5, L6, L7, S8, S9, S10, S11, S12, S13
and L14 of the metaoperator algorithm the following justifications are generated: A -
[TS,AD,TD,SB,AS]; C - [(TS,TD), (AS,AD)); OL - [TD, TS,SB,AD}; CL - []; AL -
[TD] generate [AS, SB] written in the conflict open list; ML — [TS]; COL - [AS,SB].

At this step of the algorithm the contradiction should be solved. It can be
solved either by applying the TD or by the AD operator, but the TD is much more
informative. Note that TD is applied here not because it is the first in the open list,
but because it is the first contradictory operator that can be applied. If TD was not
at the first place in the open list, the operators preceding it should have been written
automatically into the closed list, without being applied. After applying TD, the TS
operator, contradictory to it, is written into the milestone list, and the reasons for
applying the TD, the operators AS and SB are written into the conflict open list. AS
and SB are with the greatest priority and should be applied at the first opportunity.

2. 2 (1 - cos?(a)) + cos }(a) + cos (a) * (tg(a) + cos (a))

With heuristic evaluation A9 = 4, To = 7.5, Up = 4, and Vj} = 88.25. The
operators applicable at this stage are SB and TS.

A) apply SB — 2 — (1 — cos ?(a)) + cos ?(a) + cos (a) * tg(a) + cos (a)?

B) apply TS — 2 — sin ?(a) + cos ?(a) + cos (a) * (tg(a) + cos (a))

The heuristic evaluations are: Asp = 6; Tsp = 8; Usg = 4; Vg = 116 #
Ars = 4; Tps = T7; Urs = 5; Vfs = 90. The open list is: OL - [TS,SB]. Since the
operator TS is in the milestone list then its application is forbidden until the conflict
resolution list becomes empty, and this will happen after the application of SB and AS.
So the TS is written into the closed list, and the SB operator is applied because it is
the only applicable operator from the conflict resolution list. If there was any other
operator besides AS before it in the open list it would be written into the closed list
as well. The generated justifications at this step are: A - [TS,AD,TD,SB,AS]; C -
[(TS,TD),(AS,AD)]; OL - [TS,SB]; CL - [TS]; AL - [SB)] and SB is removed from the
conflict open list; ML - [TS]; COL - [AS].

3. 2-1+cos?(a)+ cos?(a) + cos(a) * tg(a) + cos (a)?

Ao =6, To = 8, Up = 4, V2 = 116.

A) apply AS — 1+ 3+ cos(a)? + cos (a) * tg(a)

B) apply TS — 2 — 1 + cos (a)? + cos (a)? + sin (a) + cos (a)?

128 Hristo Petkov, Danail Dochev

Aas = 3; Tas = 5; Uas = 4; Vis = 50 # Ars = 6; Trs = 6.5; Urs = 3;
Vis =87.25

The open list is [AS,TS]. The operator from the conflict open list to be applied
is AS. Since the TS operator is forbidden by milestone it is not written in the closed
list because it does not precede AS. If there exists an operator foregoing AS in the
open list then it should be written into the closed list. The following justifications are
obtained: A - [TS,AD,TD,SB,AS]; C - [(TS, TD), (AS, AD)]; OL - [AS,TS); CL - [J;
AL - [AS] and AS is removed from the conflict open list; ML - [TS]; COL - [].

When the conflict open list is empty, the operator from the milestone can be
applied. The next step in the solution is:

4. 1+ 3+ cos?(a)+ cos(a)*tg(a); Ag =3, To =5, Uy = 4, V@ = 50.

A) apply TS — 1+ 3 # cos(a)? + sin (a)

The evaluations are: Ars = 6, Trs = 6.5, Urs = 3, Vg = 87.25.

The choice is simple and TS is applied. If the conflict cannot be solved with
the choice of TD at the first step of the solution, TRIPS backtracks and tries AD. The
conflict is not solved when there exist no applicable operators but in the conflict open
list are left some. The justifications: A — [TS,AD,TD,SB,AS]; C - [(TS,TD), (AS,AD));
OL - [TS]; C-[]; A-[TS]; ML - []; COL - []

5. 1+ 3 +cos?(a) +sin(a); Ao = 3, Tp = 3.5, Up = 3, V# = 30.25.

The conflict is resolved, and a hypothesis is made, that this is the solution.
TRIPS checks out whether the last heuristic value is the min. In case of min, the
solution is accepted as partial. Then TRIPS tries to apply new metaoperators, and if
the system finds out any, everything is reiterated. When there are no more applicable
metaoperators the system accepts the hypothesis as a solution, made with the available
resources. The applied metaoperators are written in the metaoperator applied list.

At the end the solution is checked out in terms of overgeneralization. Over-
generalization here is defined as an implementation of a redundant logically stronger
metaoperator (having more operators than needed for solving this problem). To clarify
this see steps S12, L14 and S15 in the strategy algorithm. The overgeneralization re-
dundancy check is as follows. A union is made out of all the applied lists from the steps
of the partially accepted solution: <applied;> # <applied;> # ...# <applied,>. In
the example this is as follows: [TD] # [SB] # [AS] # [ST] — [TD,SB,AS,ST).

When any of the applied operators is repeated, it is written only once. Then this
list is compared with the assigned list and an intersection of the two is made. We obtain:
[TD,SB,AS,ST) & [TS,AD,TD,SB,AS] — [TD,SB,AS,ST]. When the intersecton is an
empty set, this is exactly the metaoperator that is needed. In the other case the
metaoperator may be overgeneralized. Then TRIPS tries to find any metaoperator from
the MOL that can cover the solution list. Finally the logically weakest metaoperator

Flexible Problem Solving for Intelligent Tutoring Systems ... 129

from the open metaoperator list, covering the solution list is accepted. Thus the conflict
with the overgeneralization is resolved.

This solution is explicit and suitable for teaching purposes because:

e it is obvious and self-evident exactly what concepts and procedural knowledge
units are underlying the transitions at the different steps;

e the applied list contains not the specific machine rewrite rule, but the type of
the transformation (the operator) which is a more general domain concept;

e the motivation for making a whole step is a definite type of transformation;

e each type of transformation can be explained further on with the applied
rewrite rules;

e this solution can provide the reasons for applying a definite type of transfor-
mation at a given step.

Similar idea of conceptualization and control for generating the solution is used
by Bundy & Welham [10], but without the strategy level and without the possibility
for flexible and explicit inference.

The presentation of the procedural knowledge units into program modules (the
operators, metaoperators and the strategies are separate modules), provides the oppor-
tunity of generating different possible solutions.

The multiple solutions of a given domain problem are ensured by:

e a backtrack over the justifications of a specific solution;

e applying another method for simplification (implying another algorithm) into
the very same strategy; '

e using another strategy for solving the overall problem.

4. Explanations. For the purposes of ITS all explanations in TRIPS should be
comprehensible for the user. An explanation is a set of reasons for applying a specific
transformation at a given step. The explanations are provided on the basis of previously
applied transformations and domain heuristics over the dynamically generated data
structures.

Now let us consider what explanations can be provided by TRIPS if we use the
solution from Example 1.

ele From the declaratively stated knowledge in TD may be derived that TD
is the reason for applying TS. This conclusion can be drawn from COL; & AL; &
COL;=[] (COL3).

e2e¢ AS and SB may be assumed as a reason for applying TS. This can be
derived on the basis of COL, & ML,; & OL;.

e3e The reason for not applying TS at the second and third step is the appli-
cation of TD at the first step.

ML, & CL; & ML3 & CL3 & & AL,

4 Cepamka 2/94

130 Hristo Petkov, Danail Dochev

e4e As AS does not belong to OL; and ASE OLj3 the reason for applying AS
at the third step is the operator that causes the appearance of AS in OL3, that is SB
(Note that this may not be the operator from the previous step).

e5¢ When CL; = /[] the operator from the applied list at that step can be
considered as a weak and unsubstantial direct reason for not applying the operators
from CLi. If Opy € AL; and Opi € COL; the operator, that has generated at first
the COL; at some previous step is the indirect reason for not applying Opi at step
i. It is assumed that providing an explanation, based on the applied transformations
at previous steps is more explicit than the explanation based on some preconditions,
because the transformations are more direct and more natural for the process of problem
solving than the preconditions, which in most of the cases are implicit and intuitive
knowledge, [8].

In the experiments with TRIPS it was found out that the most appropriate
approach for providing such an explanation is to use IF-THEN rules. Thus for example,
the IF-THEN rule of the 3rd inference, offered here is of the form:

IF Op; € ML, & Op; € ML & Op; € CL; & Op; € CLx & Op, € ALy & b<j<k

THEN <the reason for not applying Op; is Op;>

The problem is that the IF-THEN rules are domain knowledge heuristic and
often it is difficult or time-consuming to discover and formalize them.

The explanations are necessary mainly for the purposes of ITS, but they could
be used for other objectives as well (machine learning for example). TRIPS views
problem solving as purely inferential, but the inferences it provides are explicit and
flexible.

5. Contributions and future research. What we have described is a theo-
retical framework for a Domain Expert of an ITS and some specific experiences based
on that framework. The contributions of TRIPS can be specified as follows:

e a modularised approach allowing incremental development and change;

e incorporation of flexible control into the domain expert;

o explicit knowledge representation, that could be used further for teaching
purposes.

The more specific contributions are:

e a conceptualization of a class of mathematical knowledge;

o the development of knowledge bases for representing the conceptualized knowl-
edge in a logic environment (PROLOG);

» hierarchical structuring of the Domain Knowledge providing opportunities for
flexibility and explicitness;

e widespread use of procedural knowledge to guide the inference.

Flexible Problem Solving for Intelligent Tutoring Systems ... 131

The problems of the realization of an overall ITS proved to be much more
complex, than was expected 5-10 years ago. The computational resources needed ex-
ceed the capacity of modern uniprocessor computers. Thus besides the problems of
conceptualization, the implementation aspects of ITS are quite serious.

A problem solver designed on the principles presented in this paper is not only
suitable for ITS, but without any changes it can take advantage of a parallel computer
architecture. The other agents of the ITS are nothing more than a process that could
be scheduled at any time.

Even without the ITS architecture TRIPS points a way of taking advantages of
parallelism. Each processor could be assigned a single consistent viewpoint (a strategy
or a method) of the global knowledge base. TRIPS’ architecture guarantees maximum
information sharing.

The problem of course is not trivial because some of the internal functions of
TRIPS are not local. This is just an implementation idea and a profound research is
required to determine how to identify and control similar tasks.

REFERENCES

[1] Dicaev C., DocrEv D., MARKOV Z., AGRE G., An Approach for Developing
and Implementation of a Trigonometric Knowledge Base, Materials of the Second
National Conference - PERSKOMP, Sofia, 21-24 april, 1987, (in Bulgarian).

[2] Dicuev C., Doceev D., MARKOV Z., AGRE G., Trigonometry Tutor, Proceed-
ings of the 4th International Annual PEG Conference — Learning with Al, Uppsala,
Sweden, July 16-18, 1989.

[3] XI PROLOG - Version 2.0: Reference Manual, ICTT Informa, Sofia, 1989, (in
Bulgarian).

[4] DocrEV D., DiceEv C., MARKOV Z., AGRE G., Programming in PROLOG -
Basic Concepts and Applications, Nauka i Iskustvo, Sofia, 1989, (in Bulgarian).

[5] PETKOV, C., D. DOCHEV, Z. MARKOV, G. AGRE, Analysis and Formalization
of a class of Mathematical Knowledge — Technological Report for the Ministry of
Science and Education, Bulgaria, (1992).

[6] CArBONELL, J. R., Al in CAI: An artificial intelligence approach to computer
aided instruction, IEEE Transactions on Man-Machine Systems 11 (4) 1970. pp.
190-202.

132 Hristo Petkov, Danail Dochev

(7) HArTLEY, J. R., SLEEMAN, D. H., Towards Intelligent Teaching Systems, Inter-
national Journal of Man-Machine Studies 5 1973, pp.215-236.

(8] LARKIN, J., CHABAY, R. R., Computer Assisted Instruction and Intelligent Tutor-
ing Systems: Shared Issues and Complimentary Approaches, Erlbaum, Hillsdale,
NJ, 1990, pp. 10-37.

[9] ANpERsON, J. R., BovLE C. F., CorBeTT A. T., LEwis M. W., Cognitive
Modeling and Intelligent Tutoring, Artificial Intelligence 42 (1) 1990.

[10] Bunpy, A., WELHAM, B., Using Meta-level Inference for Selective Application
of Multiple Rewrite Rules in Algebraic Manipulation, Artificial Intelligence 16 (2)
1981. pp. 189-212.

(11] BrowN, J. S., BurToN R., DEKLEER J., Pedagogical, Natural Language and
Knowledge Engineering Techniques in SOPHIE I, II, and III”, in D.Sleeman and
J.Brown (Eds.), Intelligent Tutoring Systems, Academic Press, New York, 1982.

[12] McDoNALD, J., SurpEs P., Student Use of Interactive Theorem Prover, W. W.
Bledsoe, D. W. Loveland (Eds.), Automated theorem proving: After 25 years,
American Mathematical Society, 1984, pp. 315-360.

[13] WaITE, B. Y., FREDERH&SEN, J. R., Causal Model Progressions as a Foundation
for Intelligent Learning Environments, Artificial Intelligence 42 Elsevier Science
Publishers B.V. (North-Holland), 1991, pp. 99-132.

Institute of Informatics,

Bulgarian Academy of Science,

Acad. G. Bonchev St., Bl. 29A, Received 23.12.1992
1113 Sofia, BULGARIA Revised 29.04.1993

