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ISOMORPHISM PROBLEMS FOR RINGS OF FUNCTIONS
M. M. CHOBAN

ABSTRACT. In the present paper we investigate the concept of a complete algebra
of functions. The a Baire class of functions on a Tychonov space is a complete
algebra of functions. Some criteria of the isomorphism of algebras of functions are
obtained.

1. Introduction. In the present paper some problems of the theory of rings
of functions on given sets are discussed.

The content of the paper is as follows:

1. Section 1 presents the basic definitions and notations.

2. In Section 2 we discuss the concept of complete algebras of functions. For
every complete algebra E of functions on a set S, SgS denotes the analogue of the
Stone-Cech compactification and vgS denotes the analogue of the Hewitt real com-
pactification. It is proved that vgS is a dense subspace of the compact space g S and
veS =PeS\{H CPES\S:H is a zero-set in BgS}.

3. Let E be a complete algebra of functions on a set S and T, E be a sequential
closure of E of index a < Q, where Q is the first uncountable ordinal. The set t,E is a
complete algebra of functions. In section 3 it is proved that for every function f € T,E
there exists a unique extension vg f on vgS such that vgf is a Baire function of class
a. Extensions of the Baire measurable mappings are studied in Section 10.

4. In Section 4 we study the zero-set spaces introduced by H. Gordon [12].
Theorem 4.3 and 4.5 affirm that the algebra E of functions on a set S is complete if
and only if E coincides with the set of all mapping-set functions for a zero-set structure
on S. It is proved that every Lindelof space admits a unique zero-set structure.

5. In Sections 5 and 6 the fundamental theorems of Stone, Banach, Gelfand
and Kolmogorov characterizing the maximal ideals are applied to the problems of iso-
morphism of b-complete and complete algebras of functions.

6. In Section 7 we establish some properties of topological spaces vg S and SgS.

7. In Section 8 we discuss the notion of Z-perfect mappings.

8. In Section 9 the factorization theorem for Baire measurable mappings is
proved (see [4]). In Section 11 this fact is playing the key role in determining the non-
isomorphism of different algebras of Baire sets and of Baire functions in some spaces.



166 M. M. Choban

9. In all sections we discuss algebras of Baire sets and algebras of Baire func-
tions.

The present paper is connected with the results of W. J. Bade [2], M. M. Choban
(3, 4, 5, 6, 7], F. K. Dashiell (8], R. M. Dudley [9], L. Gilmar and M. Jerison [11], H.
Gordon [12], J. E. Jayne [13, 14, 22], J. E. Jayne and F. Jellett [15], R. Levy and M.
D. Rice [17], E. R. Lorch [18], P. R. Mayer [19] and Ju. E. Ochan [20, 21].

1. Preliminary results and definitions. We consider only Tychonov spaces.
We shall use the notations and terminology from [10, 11, 16, 24]. In particular, 83X is
the Stone-Cech compactification of a space X, vX is the Hewitt real compactification
of X, w(X) is the weight of the space X, the cardinality of a set Y is denoted by
|Y|, el H or clx H denotes the closure of a set H in X, N = {1,2,...}, the symbol R
will denote the field of real numbers, C(X) is the space of all continuous real-valued
functions on a space X, C*(X) stands for all bounded functions in C(X).

A space is real compact if it is homeomorphic to a closed subspace of a product
of real lines.

Let S be a set, B(S) be the space of all real-valued functions on S and B*(S§) =
{f € B(S) : f is bounden on S}. With respect to pointwise operations the sets B(S)
and B*(S) are lattice-ordered algebras. The space B(S) is a Banach algebra with the
supremum norm || f|| = sup{|f(z)|:z € S}. If a € R, then as(z) = a for every z € S.
If f€ B(S)and a € R, then weput fVa= fVasand fAa = fAas.

If EC B(S), then Tg is the topology on S generated by E and it has the base
consisting of all sets of the form ﬂ{f'-'lU; :i=1,...,n}, wheren € N, fi,...,fn € E
and Uy, ..., U, are open subsets of R. The space E separates the set S if for each pair
of distinct points z,y € S there exists f € E such that f(z) # f(y). The space (S5,TE)
is Tychonov if and only if E separates the set §.

Let a subspace E of B(S) separate the set S. Then the mapping wg : § — RE,
where wg(z) = {f(z) : f € E}, is an embedding of (S,7Tg) in RE. The closure vg$§
of the set S = wg(S) in RF is a real compactification of the space (5, Tg). The space
vgS is compact if and only if £ C B*(S).

Let E and F be separating subspaces of B(S). The symbol vgS§ > vrpS means
that there exists a continuous mapping » = n(E, F) : vgS — vgS such that n(z) =z
forall z € S.

Property 1.1. Let F C E C B(S) and F separate the set S. Then vgS >
vpS

Property 1.2. Let E C B*(S) separate the set S. Then vgS is the small-
est compactification of the space (S,Tg) such that all functions of E are continuously
extendable over vgS.

Property 1.3. BX = voe(x)X and vX = vg(x)X for every space X.
On B(S) let p denote the usual pointwise topology and let u be the topology
of uniform convergence. We have u — lim f, = f if and only if lim || f — f.|| = 0.
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Fix E C B(S). By t denote the largest topology on E in which pointwise
convergent sequences { f, : n € N} are topologically convergent. Hence, t — lim f,, = f
if and only if lim f,(z) = f(z) for every z € S. Let [Ajg = {f€E:f=t—1limf,
for some {f, € A:n € N}} for every A C S. The set A is closed in the t-topology if
and only if A = [A];g. Denote by [A], £ the p-closure of A in E and by [A], £ the
u-closure of A in E. It is clear that [A], g C [A],& C [A],&.

Let tE = E and t, E = [U{tsE : B < a}];,p(s), to E = to E N B*(S) for every
a < Q, where Q is the first uncountable ordinal. By construction tqE = [TaE);,B(s)-

For every f € B(S) we denote Z(f) = f~'(0) and S\ Z(f) = CZ(f). If
E C B(S), then Z(E)= {Z(f): f€ E}and CZ(E) = {CZ(f): f € E}.

Fix a space X. Let Bo(X) = C(X), Ba(X) = toC(X) and B%(X) = t3C(X)
for every a < Q. The functions in B,(X) are called Baire functions of class a. Let
Zo(X) = Z(Ba(X)), CZa(X) = CZ(Ba(X)), Aa(X) = Zo(X)U CaZ(X). The class
Za(X) (class CZ,(X)) is a multiplicative (additive) class a of Baire sets of the space
X. The sets A,(X) are called the Baire sets of ambiguous class a.

Fix a space X. Let PX be the set X with the topology generated by Gj-sets
in X. The topology of the space PX is called the Baire topology of the space X. For
every subspace E of Ba(X), where Bf(X) C E, we have PX = (X,Tg). If a > 0, then
Zo(X), CZ14a(X), A14a(X) are bases of the space PX.

A space by PX = vp.(x)X is called the Baire compactification of class a > 1 of
the space PX and ro PX = vp_(x)X is the Baire real compactification of PX.

A space X is called a P-space if X = PX.

Property 1.4. Z, X = {HNX : H € Z,(X)} and CZ.(X) = {HN X :
H € CZy(BX)} for every a < Q.

2. Complete algebras of functions. Fix a set S.

A subspace E of B(S) is called a b-complete algebra of functions on the set §
if it is a Banach subalgebra of B*(S) with the following properties:
1. E contains all constant functions.
2. E separates the set S.

A subspace E of B(S) is called a complete algebra of functions on the set § if
it has the following properties:
3. EN B*(S) is a b-complete algebra of functions on S.
4. f (fA(—n))Vn € E for every n € N, then f € E.
5. 1f f € E, then (f V(—n))A n € E for every n € N.

If E is a complete algebra of functions on a set S, then mE = E N B*(S) and
BES = vmES.

Property 2.1. Let E be a b-complete algebra of functions on S. Then the
operator u : C(vgS) — B(S), where u(f) = f|S, is an isomorphism of C(vgS) onto
E.

Proof. Follows from Property 1.2 and the Stone-Weierstrass theorem ([10], p.
191; [24), p. 115).
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Let Y be a dense subspace of a space X, f : Y — R be a continuous function
and e(f,y C X)=U{Z :Y C Z C X and there exists a continuous extension g : Z — R
of fover Z}. If EC C(X),then e(E,Y C X)=n{e(f,Y C X): f € E}.

Property 2.2. Let E be a complete algebra of functions on a set S and
F =FEn B*(S). Then
1. The natural mapping * = x(E,F) : vgS — PgS = vpS is an embedding and
n(veS) =e(E,S C BES).
2. vgS = n(vgS) is the mazimal subspace of BgS such that all functions on E are
continuously eztendable over vgS.
3. vS = BeS\U{H € Zo(BeS): HN S = 0}.
4. E 1is uniformly closed in B(S).
5. If f€ E and f(z) #0 for everyz € S, then 1/f € E.

Proof. Let {fm : m € N} C E, f€ B(S)and ||f — full < 27°™. If g, =
(fAn)V(-n) and gmn = (fm An)V (—n), then ||gn — gmn|| < 27™ and gmn,gn € F
for all n,m € N. Hence f € E. The assertion 4 is proved.

Fix f € E. Suppose that f(z) # 0 for each z € F and g = 1/f. Let
m.n € Nand f, = (fAn)V (—n). Then f, € F. Consider the function fp,(z) =
rnjn{fn(z)’ —m—l} if fa(z) <0 and fmn(z) = ma'x{fn(z)vm_l} if fa(z) > 0. By con-
struction there exist the continuous extensions of functions f,, finn on BgS. Therefore
fmn € F and gmn = 1/fmn € F for all m,n € N. Let g,, = (9 Am)V (-m). Then
llgm — gmnl| < n~'. Hence g,, € F for every m € N. Therefore ¢ € E. This proves
assertion 5.

By property 1.1 there exists a continuous mapping = : vgS — vgS§, where
r(z)==zforallz € S.

Let f € E and f, = (fAn)V(—n). By Bgf we denote the continuous extension
of f over ¢(f,S C BgS) and by vg f denote the continuous extension of f on vgS. By
construction, e(f,, S C BeS) = BeS,e(f,S C BeS) = BeS\N {ﬂgf,:"{—n,n} :n € N}
and vgf(y) = Bef(x(y)) for every y € vgS. Hence n(vgS) C e(E,S C BgS) C
BeS\U{H € Zy(PeS): HNS = @} and « is an embedding.

Let f € F and Z(Bef) C BeS\S. Let ¢ = 1/f. Then e(g,5 C BgS) =
BeS \ Z(Bef). Hence e(E,S C BeS) 2 BeS\ {H € Zo(BeS): HN S = @}. This

proves assertions 1,2 and 3. O

Corollary 2.3. Let E be a b-complete algebra of functions on a set S. The
algebra E is complete if and only if HNS # @ for every non-empty set H € Zo(vgS).

Corollary 2.4. Let X be a pseudocompact space, E be a b-complete algebra
of functions on the set X and E C C(X). Then E is a complete algebra of functions
on a set X and the space (X,Tg) is pseudocompact.

Corollary 2.5. Let E be a b-complete algebra of functions on a set S and the
space (S,Tg) is pseudocompact. Then E is a complete algebra of functions on the set
S.
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Corollary 2.6. Let E be a b-complete or a complete algebra of functions on
a set S. Then E is a sublattice of B(S).

Corollary 2.7. Let E be a complete algebra of functions on a set S, m € N,
f€E and f(z) 20 for everyz € S. Theng= f'/™ € E.

Proof. We put f, = (fAn™). Then f, € F = EN B*(S) and g, = (fa)V/m™ =
gV n. By virtue of Property 2.1, g, € F foreveryn€ Nandg€ E. O

Property 2.8. Let E be a b-complete or a complete algebra of functions on a
set S and 0 < a < Q. Then T, g is a Baire topology of the space (S,TE).

Proof. Let f € E and H = Z(f). Weput ¢ = 1A f2, g» = ¢g'/* and
h =t—limg,. Then Z(h) = Z(f) = h~'(-1,1) and g € L, E C ToE. Hence the G;-
subsets of (S, Tg) are open in the topology T, g. It is clear that Z(TqE) C Zq(S, Tk).
This finished the proof. O

Property 2.9. Let E be a complete algebra of functions on a space X and
C*(X)C E. Then C(X) C E. Moreover, if EN B*(X) = C*(X), then E = C(X).
Proof. Obvious.

Property 2.10. Let E; and E; be the complete algebras of functions on a set
S. The algebra E = E, N E; is complete if and only if it separates S.

Example 2.11. Let X be a locally compact non-compact space. Denote by
aX the one-point compactification of X and aC(X) = {f|X : f € C(aX)}. By
construction, the algebra aC(X) is b-complete and v,c(x)X = aX. We affirm that
the algebra aC(X) is complete if and only if X is not Lindelof.

Let X be a Lindelof space. Then H = aX \ X € Zo(aX). From Corollary 2.3
the algebra aC(X) is not complete.

Suppose that the space X is not Lindeléf. Then H = aX \ X is not Gs-subset
of a space aX and ® N X # O for every non-empty subset ® € Zo(aX). By virtue of
Corollary 2.3, the algebra aC(X) is complete.

3. Extensions of functions. Fix an infinite set S and a complete algebra E of
functions on S. Let F = §N B*(S) and aF = t, EN B*(S). For every a < § there are
continuous mappings 7o = 7(taE,E) : v S — vES and p, : 7(aF, F) : varS — vpS
such that 7,(z) = pa(z) for all z € S. By virtue of Property 2.2, vg§ C vrS§,
VgGES C VorS and 7y — Pa'Vt,.ES-

Consider the algebras of functions ctoE = {f € C(vgS) : f|S € E} and
cto E = [U{ctgE : B < a}];,B(vgs)-

Theorem 3.1. Let a < Q. Then:
1. For every f € ToE there ezists a unique functions vg f € cto E such that f = vgf|S.
2. If{f, fa:n€N}CTQF and f =t —lim f,, then vgf =t — lim vg fy.
8. The mapping v, : cto E — TLE, where v,(g) = g|S, is a topological isomorphism
relatively to the t- topology.
4. 7(VataES) = Pa(VataES) = VES.
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5. The mapping 7, is one-to-one.
6. Ifa> 1, then v, gS = Pvgs.

Proof. Assertions 1 and 2 for a = 0 follow from Property 2.2. Suppose that
a > 1 and the assertion 1 is true for every function h € N{tgE : B < a} = E,. Fix a
function f € t, E. Then f = t— limit lim g, (y) does not exist. Then there exists a set
H € Zo(B.S)such thaty € HNwgS C {g-1(gn(y)) : » € N} C BS\S. Hence, by virtue
of Property 2.2, y ¢ vgS. Therefore there exists the extension vgf =t —limvgf, =
t — lim g,, of function f. The same argument proves that vg(t —lim f,) =t — lim vg f,
for every sequence {f, € tgE : n € N}.

Let g, f € ctqE and g|S = h|S. Suppose that g(y) # h(y) for some y € vgS§.
Then for some H € Zo(BeS) we have y € HNvgS C g~ (g(y)) N h~'(h(y)). Hence
y ¢ veS. This completes the proof of assertions 1 and 2. The assertion 3 follows from
assertions 1 and 2.

Let z,y € v gS, z # y and 7,4(z) = 7o(y). Then g(z) # g(y) for some
g € ctoE. Let f = g|S and h(s) = vgf(7a(8)) for every s € S. Then h € ctoE,
h(z) = h(y) and h|S = g|S. Hence 7, is one-to-one. Assertion 5 is proved.

Let y € BES \ pa(v1,eS). Then there exists a set H € Zo([BgS) such that
y € H C BgS \ veS. By construction, p;'(y) C p;'(H) = W € Zo(varS) and
W NS = @. By virtue of Property 2.2, we have p7'(y) NS = @. Assertion 4 is
proved.

Let a > 1. By virtue of Property 2.8 and assertions 1 - 5, v, S = PvgS. The
proof is complete. O

Corollary 3.2. For every real compact space X the space PX is real compact.

Corollary 3.3 (P. R. Mayer [13]). Ba(X) = {f|X : f € Ba(vz)} for every
a <.

Corollary 3.4. For every space X and a > 1 we have PvX = r,PX.

4. Zero-set spaces.

Definition 4.1 (H. Gordon [12]). Let X be a set. The collection Z of subsets
of X is called a zero-set structure on X and (X,Z) is called a zero-set space if Z
satisfies the following conditions:
1. 0,X € 2.
2. Z is closed under finite unions.
3. Z is closed under countable intersections.
4. For each pair of distinct points of X, there is a Z € Z which contains one of the
points.
5. Whenever A,B € Z and AN B = @, then there are C,D € Z with AC X \C,
BCX\Dand(X\C)N(X\D)=0.
6. Wherever Z € Z, there erists a sequence {Z, : n € N} C Z such that X \ Z =
U{Z, : n € N}.



Isomorphism problems for rings of functions 171

A mapping ¢ : X — Y of a zero-set space (X, Z) into a zero-set space (Y, 2’)
is a zero-set mapping if ¢~!(Z’) C Z. The mapping ¢ is a zero-set homeomorphism if
@ is one-to-one and ¢, ¢! are zero-set mappings.

A function f : X — R on a zero-set space (X, Z) is a zero-set function if
f~1(Zo(R)) C Z. We denote by C(X, Z) the family of all zero-set functions on (X, Z).
Let C*(X,2)=C(X,2)n B*(X).

Example 4.2 ([12], section 8). Let X be a space. Then (X, Z,(X)) is a zero-set
space and C(X,Z,(X)) = Bo(X) for all a > 0.

Theorem 4.3. Let (X, Z) be a zero-set space. Then:
1. Z2={2(f): fe C(X,2)}.
2. (fAa)V(-a) € C(X,Z) for every f € C(X,Z) and a positive number a € R.
3. The algebra C(X, Z) is complete.

Proof. Assertions 1 and 2 are proved in ([12], Theorems 3.5 and 3.7). By ([12],
Theorem 3.5) C*(X, Z) is a b-complete algebra of functions on X. If (fAn)V (-n)€
C(X,Z) for every n € N, then from ([12], Theorem 3.7) we have f € C(X,Z). The
proof is complete. O

Lemma 4.4. Let E be a complete algebra of functions on a set X,Y = BpX,
AC X and BC X. ThenclyAncly B = @ if and only if there ezxist functions f,g € E
such that A C Z(f), B C Z(g) and Z(f)N Z(g) = O.

Proof. If clyANeclyB = @, then from Property 2.1 there exist functions
f,9 € E for which Z(f)NZ(g)= 0, AC Z(f) and B C Z(g).

Let f,g € Eand Z(f)NZ(g) = @. We assume that f = (fA1)VOand g = (gA
1) V0. There exists a continuous function ¢ € C(BgX) such that ¢(z) = min{1, f(z)+
g(z)} forevery z € X. Then Z(¢) C Y\X. Weput H = cly(Z(f)UZ(g)). The function
¢1: H — [0,2], where ¢(z) = 272¢(z) if z € cly Z(f) and ¢1(z) = (2 - 272)p(z) if
z € cly Z(g), is continuous. There exists a continuous function ¢; : Y — [0, 2] such that
@1 = w2|H. Let ¥ = 934272, By construction, Z(¢)UZ(¥) C Y\X, ¢(z) = 27 1¢(z)
if z € Z(f) and ¥(z) = 2¢(z) if z € Z(g). Let h(z) = (¢(z))~! - (¥(z))~! for every
z€X. Thenh € E,h(z) < -1if z € Z(f) and cly Z(f) N cly Z(g) = O. The proof is
complete. O

Theorem 4.5. Let E be a complete algebra of functions on a set X. Then:
1. (X,Z(E)) is a zero-set space.
2. E=C(X < Z(E)).

Proof. Assertion 1 follows from ([12, Theorem 2.3).

Let fe E,bjceRand c<b. Weput o =(f—cx)VOand ¥ =(f—bx)AD.
Then ¢, % € E and f~'(¢,b) = X \ (Z(¢)U 2(¢)). Hence f € C(X,2(X))=F,ECF
and there exists a continuous mapping p : BpX — BgX such that p(z) = z for every
z € X. LetY = BpX, S = BpX, AC X, BC X and clsANcisB = @. Then
there exists a continuous function f : § — [0,1] such that A C f~'(0) € Z(E) and
B C f~Y(1) € Z(E). By virtue of Lemma 4.4, cly ANecly B = @ and p is one-to-one.
Hence E = C(X,Z(X)). The proof is complete. 0O
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Corollary 4.6. Let F be a b-complete algebra of functions on a set X. Then
E = C(X,Z(F)) is the minimal complete algebra of functions on X such that F C E.

Theorem 4.7. Let F be a b-complete algebra of functions on a set X. The
following assertions are equivalent:
1. IfH L€ Zo(vpX)and HNLNX = O, then el x(HN X)Nel,.x(LNX) = 0.
2. There erists a unique complete algebra E of functions on the set X such that F =
En B*(X).

Proof. Implication 2 — 1 follows from Lemma 4.4. The proof of the implica-
tion 1 — 2 is similar to that of assertion 2 of Theorem 4.5. O

For every family £ of subsets of a set X denote by écL the collection of all
countable intersections of sets of the family CL = {X \ H : H € L}.

Lemma 4.8. If Z is a zero-set structure on a set X, then §cZ is a zero-set
structure on X and C(X,8c2)=t,C(X,2).
Proof. Obvious. O

Corollary 4.9. If E is a complete algebra of functions on a set X, then for
every a < () the algebra T, E is complete.

Corollary 4.10. B,(X) is a complete algebra of functions on the set X for
every space X .

Theorem 4.11. Let T be a topology of a Londelof space X. Then for an
algebra E of functions on X the following assertions are equivalent:
1. E is a complete algebra and T = Tg.

2. E=C(X).

Proof. The implication 2 — 1 is obvious. Let E be a complete algebra of
functions on X and Tg = T. Fix the closed subsets H, L of X for which HNn L = Q.
Let Y = BgX, Hy = clyH and L, = clyL. Since X is a Lindelof spaces, then there
exists a closed Gs-subset P of Y such that H;,NL; C P C Y \ X. From the proof
of Lemma 4.4 it follows that there are continuous functions f,g : Y — [0,2] such that
Z(f) = Z(g) = P, g(z) = 27'f(z) if z € H and g(z) = 2f(z) if z € L. Consider
the continuous function h(z) = (f(z))™' — (¢9(z))~! on X. By construction, h € E,
H C h™'(-=o00,—1) and L C h~'(27',400). Hence, from Theorem 4.7, L, N H, = O,
Y = X and E = C(X). The proof is complete. O

Corollary 4.12. Every Lindelof space admits a unique zero-set structure.

5. Isomorphism problem for algebras of functions. Let X be a space
and f € Bg(X). Then vf is a continuous extension of f on vX. If E is a complete
or b-complete algebra of functions on the set X and f € E, then vgf is a continuous
extension of f over vg X and fgf is a continuous extension of f over e(f, X C fgX).

If E is a b-complete algebra of functions on a set X, then we assume that
BeX =vgX.



Isomorphism problems for rings of functions 173

Theorem 5.1. Let E be a Banach algebra of functions on a space X, F be
a Banach algebra of functions on a space Y, Bj(X) C E C Bj(X), Bfy(Y)C F C
By(Y) and ¢ : E — F be a ring isomorphism. Then there ezists a homeomorphism

Y:vgX — vrY such that:
1. ¥(vX) =Y.
2. Y(Z(vef)) = Z(vr(¢(f))) for every f € E.

Proof. By virtue of property 2.2 and Theorem 3.1, PvX is a subspace of vg X
and PvY is a subspace of vpY.

A proper subring J of E is a prime ideal of Eif J-E C J and f-g € J
implies f € J or g € J. For every maximal prime ideal J of E there exists a unique
point z(J) € vgX such that J = {f € E : vgf(z(J)) = 0}. Also for every maximal
prime ideal J of F there exists a unique point y(J) € vrY such that J = {f € F :
vr f(y(J)) = 0} (see [11], Chapter 4). Hence there exists a unique one-to-one mapping
¥ : vgX — vpY such that ¢(z(J)) = y(e(J)) for every maximal prime ideal J of
E. By construction, Z(vgf) = {z(J) : J is maximal prime ideal of E and f € J}.
Therefore Z(ve(¢(f))) = ¥(Z(vef)) for any f € E.

Since Bj(X) C E C By(X) and Bj(Y) C F C By(Y), by virtue of Property
2.2, PuX = vgX \U{H € Zo(veX): HN PvX = @} and PvY = vpY \U{H €
Zo(vrY) : HN PvY = 0@}. The spaces PvX and PvY are P-spaces. Hence z €
veX \ PvX if and only if there exists a set H € Zo(vgX) such that z € H and
intH = @ and, similarly, y € vgY \ PvY if and only if y € G and [ G = O for some
G € Zo(vrY ). Therefore ¥(PvX) = PvY. The proof is complete. O

Theorem 5.2. Let E be a b-complete or complete algebra of functions on a

set X, F be a b-complete or complete algebra of functions on a setY and ¢ : E onte p

be a ring isomorphism. Then there erists a homeomorphism ¢ : fpX e BrY such

that:

1. ¢(mE) = mF, where mE = EN B*(X) and mF = Fn B*(Y).

2. Y(vgX)=vrY.

3. Z(Bre(f)) = Y(Z(BES) and Z(vre(f)) = W(Z(veS)) for every f € E.
4. The algebra E is complete if and only if the algebra F is complete.

Proof. Let E¥ = {fe€ E: f >0} and F* = {g € F : g > 0}. By virtue of
Property 2.7, E¥ = {f?: f € E} and F* = {¢?: g € F}. Hence F* = o(E*). If
f,g€ Eand f < g,then f—g€ E*, o(f) - ¢(g) € F* and ¢(f) < ¢(g). Therefore ¢
is a lattice isomorphism. It is clear that ¢ = 1x if and only if f-g = f for every f € E.
Hence p(1x) = ly and @(Ax) = Ay forevery A€ R. If f € mE, then —nx < f < nx
for some n € N. Therefore o(mE) = mF and ¢((f) An)V(-n)) = (¢(f)An)V (-n)
for all f € E and n € N. The assertions 1 and 4 are proved. In particular, mE and
mF are b-complete algebras and ( = ¢|mE is a ring isomorphism of mE onto mF.

For every maximal prime ideal J of mE there exists a unique point z(J) €
BeEX = VpmgX = BmeX such that J = {f € mE : fgf(z(J)) = 0} and for every
maximal prime ideal J of mF there exists a unique point y(J) € BrY such that
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J ={g€mF:prg(y(J)) = 0} (see[11], Chapter 4).

Then there exists a unique one-to-one mapping ¥ of fgX onto BrY such
that ¥(z(J)) = y(¢(J)) for every maximal prime ideal J of mE. By construction,
Z(Bre(f)) = ¥(Z(Bef)) for any function f € E.

If E=mE, then F = mF. In this case the proof is complete.

Let E # mE. Then E and F are complete algebras of functions. Fix a point
z € BpX \ veX. By virtue of Property 2.2, there exists a set H € Zy(8gX) such that
z € H C BeX \veX. Fix a continuous function f € mFE such that H = Z(Bgf).
From Property 2.2, g = 1/f € E\ mE. Let h = ¢(f) and p = ¢(g). By construction,
h-p=1y,p(y) > 0 for every y € Y and e(p,Y C BrY) = BrY \ Z(Brh) = BrY \
Z(Brh) = BrY \ ¥(2(Bef)). Hence ¥(z) € BrY \ vry and ¢ (vgX) = vpY. Assertion
2 is proved. If f € E and g = min{1, f?}, then Z(Bgf) = Z(BEg). This completes the
proof. O

Definition 5.3.  An algebra E of functions on a set S is real compact if
(S,TE) is a real compact space.

A complete algebra E of functions on a set S is real compact if and only if
veS = (S,Tg).

A zero-set space (X, Z) is real compact (see[12]) if and only if the algebra
C(X,Z) is real compact.

Corollary 5.4. Let E be a complete real compact algebra of functions on a set

X and F be a complete real compact algebra of functions on a set Y. Then for every

ring isomorphism ¢ : E onto F' there erists a unique homeomorphism ¢ Xy of the

space (X,Tg) onto a space (Y,Tr) such that Zvpp(f)) = Y(Z(vef)) for all f € E.

Corollary 5.5. Let (X,2) and (Y,2') be real compact zero-spaces. The
algebras C(X,2) and C(Y,Z2') are ring isomorphic if and only if the zero-set spaces
(X, Z2) and (Y, 2') are zero-set homeomorphic.

Theorem 5.8. If E is a complete algebra of functions on a set X and F is a
complete algebra of functions on a set Y, then the following assertions are equivalent:
1. E is ring isomorphic to F.

2. There ezists a homeomorphism v : vg X onto vrY such that Y({Z(vef): f € E}) =
{Z(vrg): 9 € F}.
3. There exists a homeomorphism ( : fgX oo BrY such that ((vgX) = vrY.

Proof. Implications 1 — 3 — 2 follow from Theorem 5.2. We put Z =
{Z(vef): f€ E} and 2' = {Z(vrg) : g € F}. Then ¢ is a zero-set homeomorphism
of a real compact zero-set space (vg X, Z) onto a real compact zero-set space (vrY, 2’).
From Theorem 4.5 it follows that £ = {F|X : f € C(vgX,2)} and F = {g|Y :
g € C(vrY,2')}. Hence implication 2 — 1 follows from Corollary 5.5. The proof if
complete. 0O

A mapping f: X — Y of a space X into a space Y is called:

— Baire measurable of class a if f~1(Zy(Y)) C Za(X);
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- Baire homeomorphism of class (a,B) if f is one-to-one, f~1(Zo(Y)) C Za(X) and
£(Zo(2)) C Z5(Y );
— Baire isomorphism of class (a, 3) if f is one-to-one and f(Z,(X)) = Zs(Y).

Every Baire isomorphism of class (a, 3) is also Baire homeomorphism of class
(a,B). Every Baire homeomorphism of class (a,f) is a Baire isomorphism of class
(4, n) for some p € N and n € Q.

Corollary 5.7. If X and Y are spaces, 0 < a < Q and 0 < 3 < Q, then the
following assertions are equivalent:
1. There erists a Baire isomorphism ¢ : vX — vY of class (a, ).
2. The zero-set spaces (vX,Z,(vX)) and (vY, Zg(vY')) are zero-set homeomorphic.
3. B,(X) is ring isomorphic to Bs(Y).

Corollary 5.8. If X and Y are spaces and a, > 1, then the following
assertions are equivalent:
1. There erists a Baire isomorphism ¢ : vX — vY of class (a, ).
2. The spaces b, PX and bgPY are homeomorphic.
3. B.(X) is ring isomorphic to Bs(Y).
4. B3(X) is ring isomorphic to B3(Y).

Corollary 5.9 (J. E. Jayne [22]). Let X and Y be real compact spaces and
a, > 1. Then the following assertions are equivalent:

1. There erists a Baire isomorphism ¢ : X — Y of class (a,3).
2. Ba(X) is ring isomorphic to Bs(Y).
3. B;(X) is ring isomorphic to By(Y).

Example 5.10. Fix a compact space X and a > 1. Then Y = b,PX is a
compact space and the algebra Bj(X) is ring isomorphic to Bo(Y) = C(Y). If X is
an infinite countable space, then Y is a Stone-Cech compactification of a countable
discrete space and Y is uncountable. Therefore the spaces X and Y are not Baire
isomorphic. Hence the assumption a,3 > 1 in Corollaries 5.8 and 5.9 are essential.

Theorem 5.11. Let X and Y be spaces with countable pseudocharacter, E be

a b-complete or a complete algebra of functions on X, F be a b-complete or a complete

algebra of functions on Y, B}(X) C E and B{(Y)C Y. If o : E 22 F is a ring

isomorphism, then there ezists a unique homeomorphism ¢ : g X — BrY such that
Y(X) =Y and Y(Z(Bef)) = Z(Bre(f)) for every f € E.

Proof. The spaces (X,Tg) and (Y, TF) are discrete. From Theorem 5.1 there
exists a homeomorphism v : B X — BrY such that ¥(Z(B8ef) = Z(Bep(f)) for every
f € E. If z € X, then {z} is an open subset of BgX, {¢(z)} is an open subset of
B)FY and ¢(z) €Y. Hence y(X)=Y. O

From Cech’s theorem ([10], Problem 3.6G(b)) and Theorem 5.2 it follows:

Corollary 5.12. Let X and Y be first countable spaces. X and Y are Baire
isomorphic of class (a, B) if and only if the algebra B(X) is ring isomorphic to B3(Y).
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8. Isomorphism of topological algebras of functions. On the spaces of
functions in this section we consider only the topology of pointwise convergence.

Theorem 8.1. Let E be a b-complete algebra of functions on a set X, F be

a b-complete algebra of functions on a setY and ¢ : E 0 £ be a ring topological

isomorphism. Then there ezists a unique homeomorphism ¢ : B X — PrY such that
P(X) =Y, ¢|Y is a homeomorphism of the space (X,Tg) onto the space (Y,Tr) and
Z(¢(f)) = ¥(Z(f)) for any f € E.

Proof. In the proof of Theorem 5.2 we construct a unique homeomorphism
¥ : BeX — BrY such that ¥(z(J)) = y(p(J)) for every maximal prime ideal J of
E = mE and Z(¢(f)) = ¥(Z(f)) for all f € E. The maximal ideal J of E is closed in
E if and only if z(J) € X. Hence ¥(X) =Y. The proof is complete. O

Theorem 8.2. Let E be a complete algebra of functions on a set X, let F -be
a complete algebra of functions on a setY, mE = ENB*(X) and let mF = FNB*(Y).
Then the following assertions are equivalent:
1. The topological rings E and F are topologically isomorphic.
2. The topological rings mE and mF are topologically isomorphic.
3. The zero-set spaces (X, Z(E)) and (Y, Z(F)) are zero-set homeomorphic.

Proof. Let ¢ : E — F be a ring isomorphism of F onto F. By virtue of
Theorem 5.2, we have ¢(mE) = mF. Implication 1 — 2 is proved. Implication 2 — 3
follows from Theorem 6.1. Implication 3 — 1 follows from Theorem 4.5. O

Corollary 6.3. If (X,Z2) and (Y, Z2') are zero-set spaces, then the following
assertions are equivalent:
1. The spaces (X, Z2) and (Y, 2') are zero-set homeomorphic.
2. The topological rings C(X, Z) and C(Y,2’) are topologically isomorphic.
3. The topological rings C*(X, Z) and C*(Y,2') are topologically isomorphic.

Corollary 6.4. If X and Y are spaces and a,B3 > 0, then the following
assertions are equivalent:
1. There ezists a Baire isomorphism ¢ : X — Y of class (a,f3).
2. The zero-set spaces (X, Zo(X)) and (Y, Zp(Y')) are zero-set homeomorphic.
3. The topological rings B,(X) and Bg(Y') are topologically isomorphic.
4. The topological rings B (X) and B3(Y') are topologically isomorphic.

7. On F-spaces. A space X is an F-space if for every subset U € CZy(X)
the set clU is open.

A family ¥ of subsets of a set § is called a field-base of subsets of S if it satisfies
the following conditions:
1. fA,Be X, then S\BeX, AUBeXand ANBEZL.
2. fz,y€ S and z # y, then AN {z,y} = {z)} for some A € S.

For any family £ of subsets of a set §, B*(S,X) denotes the norm closed sub-
space of B*(S) generated by the characteristic functions of sets in L.
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Fix a family ¥ of subsets of a set S. Let o be the smallest collection of
subsets which contains ¥ and is closed under countable unions, §X = {N{H, : n € N} :
{H,:n €N} C L} and fE =0ZNL.

For every field-base ¥ of subsets of a set S denote Zy(S,X) = 0, CZy(S,X) =
0%, Zo(S,E) = §(U{CZ,(S,E): p < a}), CZs(S,Z) = {S\ H : H € Zs(5,X)} and
CZa(S, )N Za(S,Z) = Aa(S, X).

Fix a field-base ¥ of subsets of a set S.

Lemma 7.1. Z,(S5,X) = 0A.(S,X) for alla < Q and A.(S, Z) is a field-base
of subsets of a set S.

Proof. Obvious. O

Lemma 7.2. (5,Z.(S,X)) is a zero-set space for every a.

Proof. Let H € Z,(S,%). Then H = N{H, : n € N} for some sequence {H, €
Aa(S,E):n € N}. Then V,, = S\ H, € H, € As(S,Z) and S\ H = U{V,, : n € N}.
a

Corollary 7.3. IfB,(S,X) = C(S, Za(S,X)) and B5(S,X) = C*(S, Za(S, X))
then B,(S,X) is a complete algebra of functions on S and B;(S,Z) = B*(S, Aa(S, X)).

Lemma 7.4. Let0<a<p <R, E= B3(S,X) and F = By(S5,X). Then:
1. ECF, Tg C Tr and dimvgS = 0.

2. Ifa > 0, then Tg = Tr and 8% is a base of topology TE.
3. IfU € CZo(vgS), then cl,.s(UNS) is open in vpS.

Proof. Let H € Zq(S,X). Then H = U{n{H(n1,n2,...,n) : k € N} :
(nr1,n2,...) € NN} for some family {H(n;,n2,...,nx) € T : k,ny,n,...,nx € N}
The family vAq(S,E) = {cl,zsH : H € A4(S,X)} is an open and closed base of a
compact space vgS. This prooves 1. and 2.

Let U € CZo(veS). Then there exists a sequence {U, € vA,(S,X) : n € N}
such that U = U{U, : n € N} and U, NU,, = @ forn < m. Hence UNS € 0dA,(S,X) C
Ap(S,Z) and el ,s(UNS) € vAp(S,X). Assertion 3 is proved. O

Corollary 7.5. If E = Bj(S,X), then vgS is an F-space.
Corollary 7.6. bqPX is an F-space for every space X .

Lemma 7.7. If E = B%(S,X) and a > 0, then the following assertions are
equivalent:
1. vgS is an F-space.
2. Aa(S,X) is a o-field.

Proof. If A,(S,X) is a o-field, then A,(S,X) = Zq(S5,Z) and by virtue of
Corollary 7.5, vgS is an F-space.

Let vgS be an F-space and U € CZ4(S,Z). Then the sets U and S\ U
are open in (5,7g). By virtue of Lemma 7.4, there are open subsets V and W of

7 Cepamka 2/94
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vpS and a sequence {U, : n € N} C A,(S,X) such that V U {el,,sU, : n € N},
U=U{Up:neN}=VNnSand WNS=S5\U. Theset H =cl, sV is open in vgS§.
By construction, H = ¢l,,sU, HNWNS =0 and HNS = U. Hence U € A,(S,X),
Ay(8,E2)=CZ4(S,X) and A,(S,X) is a o-field. The proof is complete. O

Example 7.8. Let X be an infinite compact F-space and £ be a family of all
open and closed subsets of X. Then T is a field-base of subsets of X, E = By(X,X) =
C(X), vEX = X and Ao(X,X) is not a o-field.

Proposition 7.9. Let (X, Z) be a zero-set space, E be a b-complete algebra
of functions on X and B*(X)Nnt,C(X,Z2)C E.
1. If {z, € X : n € N} is a convergent sequence of space vg X, then there ezists n € N
such that z,, = z,, for every n > m.
2. IfY 1is an infinite countable subset of X, then Y is closed and discrete in (X, TE).
Moreover, if t3(C(X,Z)) C E, then the closure of Y in vgS is homeomorphic to the
Stone-Cech compactification BY of the discrete space Y.
3. Every infinite subset Z of X contains an infinite countable subset Y such that the
closure of Y in vp X is homeomorphic to BY of the discrete space Y .
4. Every pseudocompact subspace of the space (X,Tg) is finite.
5. IfY C X and Z = cl, . xY, then the character of every pointz € Z\Y in Z is
uncountable.

Proof. Let Y = {y, € X : n € N} and z,, # z,, for n < m.

If oo = Z(1,C(X,2))NCZ(t,C(X, 2)), then there exists a family {®, € L, :
n € N} such that:

(i) yn € @, for every n € N;

(ii) if n < m, then &, N ¢,, = O.

By construction, {®, : n € N} is a discrete family of open and closed subsets
of the space (X,7g). For every H C N we consider a function fy : X — R such that
fg'(0) = U{®, : n € N} and f5;'(1) = X\ N{®, : n € N}. If 3C(X,2) C E, then
fu € E for every n € N and every two of disjoint subsets of Y have disjoint closures in
vpX.

Fix an infinite subset Z of X. Then there exists a sequence {V;, : n € N} such
that:

(iii) X \ V, € Z for any n € N;

(iv) Van Z # 0 for all n € N;

(v)if n <m, then V,NV,, = Q.

Fix asubset Y = {y, € ZNV, :n € N}. Let W) = X \U{V, : n € N} and
W, =V, forn > 1. Then {W, :n € N} is a discrete cover of the space (X,Tg). For
every H C N we consider the function gy : X — R such that gg(U{W, :n € N}) =0
and gy(X \U{W, : n € N}) = 1. It is clear that gy € E. Hence the closure of Y in
vg X is homeomorphic to BY of the discrete space Y. Assertions 2 and 3 are proved.
Assertions 1, 4 and J follow from assertion 2. The proof is complete. 0O

8. On Z-perfect mappings. A subset ® in a space X is called bounded if
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every real-valued continuous function on X is bounded on ®. The set @ is bounded in
X if and only if the set ¢l, x® is compact.

Definition 8.1. A mapping f: X — Y is called Z-perfect if it is continuous,
f(H) is closed in Y for every H € Zo(X) and the fiber f~(y) is bounded in X for
every point y €Y.

Every perfect mapping is Z-perfect.

Lemma 8.2. Let f: X — Y be a Z-perfect mapping. If all fibers f~'(y) are
compact subsets of X, then f is perfect.

Proof. Let H be a closed subset of X and {H, : p € M} = {A € Zo(X):
H C A}. Then f(H)=nN{H,:p€e M}. O

Lemma 8.3. Letvf : vX — Y be a continuous extension of a mapping
f:X =Y of a space X onto a space Y with a countable pseudocharacter. Then the
following assertions are equivalent:

1. f is Z-perfect.
2. vf:vX =Y is perfect.

Proof. Let f be Z-perfect. Fix a point z € vX \ cl,x f~'(y). There exist
sets A, B € Zo(vX) such that el,xf"'(y) C B,z € Aand ANB = 0. ThenV =
Y\ f(ANX)is openin Y and y € W C V for some W € Zo(Y). If z € vf~'(y), then
z€P=ANvf'W € Zy(vX)and PN X = O. Hence vf~(y) = cluxf~'(y) and f
is a compact mapping.

Fix H € Zo(vX). Wye vf(H)\ f(XNH), then H\vf"'(XNH)=Pisa
Gs-set of vX and PN X = @. Hence f(HNX) = vf(H) and vf is Z-perfect. By
virtue of Lemma 8.2, v f is perfect.

Suppose that vf is perfect. Then f is bounded, i.e. the fiber f~'(y) are
bounded in X. Let H € Zo(vX)and vf(H) # f(XNH). Hyevf(H)\ f(XNH),
then f~1(y) € X \ H, {y} is a Gs-subset of Y, P = HNvf~'(y) CvX\ X and Pis a
Gs-set in vX. Hence P = @ and vf(H) = f(H N X) for every H € Zo(vX). It follows
from equality Zo(X) = {X N H : H € Zo(v)} that the mapping f is Z-perfect. The
proof is complete. O

Corollary 8.4 ([3], Proposition 1.1). Every continuous mapping f : X =Y
of a pseudocompact space X into a metric or a first countable real compact space Y is
Z -perfect.

Lemma 8.5. Let f: X — Y be a Z-perfect mapping into a separable metric
space Y and G : X — S be a continuous mapping onto a separable space S. Then the
diagonal mapping ¢ = A{f,9}: X = Y x S, where p(z) = (f(z),9(y)), 18 Z-perfect.

Proof. It is clear that vp = A{vf,vg}: vX — Y; = ¢(X) and Y is a closed
subset of Y x S. The mapping vf is perfect. From Theorem 3.7.9 [10] it follows that
v is perfect. By Lemma 8.3 the mapping ¢ is Z-perfect. The proof is complete. O

Remark 8.6. The implication 1 — 2 in Lemma 8.3 is correct for every space
Y.
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Example 8.7. Let S be a pseudocompact non-compact space and X = (85 x
[0,1])\ ((BS\ §) x {0}). Consider the continuous mapping f : X — Y = (S onto
a compact space Y, where f(z,y) = z for every pointg(z,y) € X. By construction,
BX =vX = S x[0,1], H= X x {0} € Zo(X) and f(H) = § C BS. Hence
vf:vX =Y is a perfect mapping and the mapping f is not Z-perfect.

9. Factorization theorem. A space X is called a paracompact p-space if
there exists a perfect mapping of X onto a metric space [1]. Every Cech complete
paracompact space is a paracompact p-space (Z. Frolic [10], Problem 5.5.9).

Proposition 9.1. Let f: X — Y be a Baire measurable mapping of class .
Then there ezist a space S, a continuous mapping ¢ : X — S and a mappingy : S =Y
such that:
1. f=1v%p and w(S)=w(Y).
2. If X is a Lindelof p-space, i.e. X admits a perfect mapping onto a separable metric
space [1], then the mapping ¢ is perfect.
3. IfY is a Lindelof space, then ¢ is a Baire measurable mapping of class a.
4. IfY 1s a separable metric space and f is a Z-perfect mapping, then the mapping ¢
s Z-perfect.

Proof. Fix a closed base {H, € Zo(Y) : p € M} of a space Y, where
IM| = w(Y). Then for every 4 € M there exist a separable metric space Y, and a
continuous mapping ¢, : X — S, such that ¢ (¢, (f"'H,)) = f'H, € Z.(X)
and @ (f~'H,) € Za(5,) (see [2], Lemma 1.2). Consider the diagonal mapping
p=A0pu:p€ M}: X - 8§ =¢(S5) CI{S, : p € M}, where p(z) = {pu(z) :
p € M}. The mapping ¢ is continuous and w(Z) = |M| = w(Y). If z € S, then
¥(z) = f(¢~'(z)) is a one-point subset of Y. Hence ¢ : § — Y is a single-valued
mapping and f(V) = ¥(¢p(z)) for every point z € X. Assertion 1 is proved.

If g: X — Y, is a perfect or a Z-perfect mapping onto a separable metric space
Y1, then we assume that ¥} = S, and g = ¢, for some p € M. If the mapping g is
perfect, then by Theorem 3.7.9 [10] the mapping ¢ is perfect. If Y is a separable metric
space and g is a Z-perfect mapping, then from Lemma 8.5 it follows that the mapping
@ is Z-perfect. The assértions 2 and 4 are proved.

Consider the projections 7, : § — S,. By construction,

Vi (Hy) = 7. (eu(f71(Hy)))

and v~ '(H,) € Z,(§) for every u. Let Y be a Lindelof space and H € Zo(Y). Then
there exists a countable subset A C M such that H = N{H, : p € A}. Therefore
Vv 'H =nN{¢ " "H,, : p € A} € Z,(S5). This proves assertion 3. 0O

Corollary 9.2. Let X and Y be Baire homeomorphic Linelof p-spaces. Then
w(X) = w(Y).

Corollary 9.3 ([4], Section 12). Let X and Y be Baire homeomorphic compact
spaces. Then w(X )= w(Y).
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10. Extension of mappings.

Theorem 10.1. Let ¢ : X — Y be a Baire measurable mapping of class a.
Then:

l. There erists a Baire measurable mapping vy : vX — vY of class a such that
= vp|X.
2 If¢Y :vX — vY is a Baire measurable mapping and ¢ = ¢|X then ¢ = vep.

Proof. We assume that Y C RC(Y) = TI{R,: g€ C(Y)} and y = {g(y): 9 €
C(Y)}forevery y€ Y. Then g: Y — R = R, is a continuous projection. If f € C(Y)
then g7y : X — R = Ry, where g4(z) = f((p(z)), is a Baire measurable mapping
of class a. By Theorem 3.1 there exists a Baire measurable function ¢y € Ba(vX)
such that gy = ¢s|X and gy(X) = ¢s(X). Consider the mapping vy = A{py :
feCY)}:vX = § = vp(vX) C RCY), where vp(z) = {gs(z) : f € C(Y)}.
Suppose there exists a point b = {b; : f € C(Y)} € §\vY. The set vY is closed
in RC(Y), There exists a finite subset A of C(Y) such that W = {z = {2y : f €
C(Y)} € R°Y) : z; = by for every f € A} € Zo(R°Y)), b€ W and WNvY = 0.
Then H = v~ (W) = n{¢;’(b,) € Zo(vX) and v¢~'(b) € H C vX \ X. Therefore
S C vY. By construction, v~ (Z(vf)) = Z(ps) € Za(vX) and ¢ = vp|X. In
particular, vy is a Baire measurable mapping of class a.

Let ¥ : vX — vY be a Baire measurable mapping and ¢ = 9|X. Suppose
that z € vX and ¥(z) # vp(z). There exist H, B € Zo(¢Y) such that ¥(z) € H,
vo(z) € Band HNB=0. Thenz € P=9¢ 'HNve !B CvX \ X and P is a Baire
set. This contradiction finishes the proof. O

Corollary 10.2. Letp: X — Y be a Baire homeomorphism of class (a,f3).
Then:
1. There ezists a unique Baire homeomorphism vy : vX — vY of class (a,f) such
that ¢ = vp|X.
2. If ¢ is a Baire isomorphism of class (a,3), then vy is a Baire isomorphism of class
(a,B)-
3. The space X is real compact if and only if Y is real compact.

11. Equivalence of families of sets. Non existence of ring isomorphism.
A family Z of subsets of a set X is equivalent to a family £ of subsets of a set Y if
there exists a one-to-one mapping ¢ : X — Y such that ¢(£) = Z. The mapping ¢
is called an (£, Z)-isomorphism. This notation was introduced by E. Spilrain (25, 26]
(see [7]).

Theorem 11.1 ([20, 21] for complete separable metric spaces). Let X and Y
be separable metric spaces, X or Y contains some non-empty compact perfect subset
and a < Q. If L C CZu(X) and Z,(Y) C Z, then the families L and Z are not
equivalent.

Proof. Let ¢ : X — Y be an (£, Z)-isomorphism. Then ¢~1(Z,(Y)) C
CZ4(X) and ¢ is a Baire measurable mapping. If F is an uncountable compact subset
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of X, then there exists an uncountable subset H of F such that ¢|H is a topological
embedding (see [16], p. 32). The space & = (H) is compact and there exists a set
P € (2N Zy(®)\ CZa(Y). By premise ¢ 'P € L C CZ,(X) and, by construction,
¢ 'P € Z,(H)\CZ,(X). This contradiction completes the proof. O

Theorem 11.2. Let X admit a Z-perfect mapping onto a separable metric
space and Y contain a compact subset H € Zo(Y') such that there ezists a continuous
mapping of H onto [0,1]. Then:

1. For every Baire homeomorphism h : vX — vY of class (a,3) there are: separable

metric spaces Z and S, an uncountable compact subset ® of Z, a perfect mapping

p:vX omto Z, a continuous mapping ¥ : vY D S and a Baire homeomorphism

g:Z — S of class (a, B) such that g|® is a topological embedding, v~'(g(®)) C H and
¥(h(z)) = g(¢(z)) for every z € X.

2. Ifa< R, LCCZy(vX) and Zo(vY) C 2 C Zq(vY) or Zo(vX) C L C Zg(vX)
and Z C CZ,(vY ), then L is not equivalent to Z.

3. If a <N, LCCZy(X) and Zo(Y) C Z C Zq(Y) or Zo(X) C L C Zg(X) and
Z C CZa(Y), then L 1s not equivalent to Z.

4. If a # B, then Z,(X) is not equivalent to Zg(Y) and Z,(vX) is not equivalent
Zz(vY).

5. If a # 3, then B,(X) is not ring isomorphic to Bg(Y').

6. If0 # a # 3 # 0, then B3(X) is not ring isomorphic to By(Y).

Proof. Let h: vX — vY be a Baire homeomorphism of class (a,3). There
exist a separable metric space Z, and a continuous mapping ¥, : vY — Z; such that
Y~ (¢1(H)) = H and ¢;(H) is an uncountable compact. The mapping ¢; : vX — Z,,
where p1(z) = v¥;(h(z)) is Baire measurable of class a. By Proposition 9.1 there
exist a separable metric space Z;, a perfect mapping ¢2 : vX — Z; and a Baire
measurable mapping hy : Z; — Z; of class a such that ¢,(z) = hy(p2(z)) for every
z € vX. The mapping ¥ = @0 h™! : VY — Z; is Baire measurable of class f3.
Then there exist a separable metric space Z3, a continuous mapping ¥3 : vY — Z3
and a Baire measurable mapping hy : Z3 — Z; of class  such that ¥ = hy o ¥3.
Therefore there exist a sequence {Z,, : n € N} of separable metric spaces and mappings
{pn:vX = Zn, ¥ : VY — Zp,hy : Znyr = Zn : n € N} such that:

l. pn=Ynoh, Yo =¢no h_ls ¥Pn = hn 0 Pntl and ¢, = hy 0 Yp4 for every n € N;
2. The mapping 3, is perfect, the mappings @2,-1,h2,-1 are Baire measurable of
class a, the mappings ¥2,, hy, are Baire measurable of class § and the mapping %an-1
is continuous for every n € N.

The mapping ¢ : vX — Z = ¢(Z) C 1{Z3, : n € N}, where p(z) = {p2n(z) :
n € N} is perfect and the mapping v : v¥ — § = ¢(5) C II{Z3.—1 : n € N},
where ¥(y) = {¥2,-1(y) : n € N}, is continuous. By construction, ¢ Y (eH) = H
and the compact @(H) is uncountable. The mapping ¢ : Z — S, define through
9({zan}) = {han-1(220} and ¢7'({z2n41}) = {h2n(22n41)} is a Baire homeomorphism
of class (a, 3). Then there exists a non-empty compact perfect subset ® of Z such that
g9(®) C ¥(H) and g|® is a topological embedding (see [16]). For every u < 2 we fix the
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set Uy € Zmu(®) \ CZ,(®). By virtue of the J. Saint-Raymond theorem (23, 22] and
the results of paper ([6], Section 3) we have

V,=¢ ', € Z2,(vz)\CZ,(vX) and

W, = v (gU,) € Z,(H,) \ CZ,(H) C Z,(vY) \ CZ,(vY).

By construction, h(V,) = W, for every u. From Theorem 3.1 it follows that V, N X €
Z,(X)\ CZ,(X). This proves Assertions 1, 2, 3 and 4. Assertion 5 follows from
Theorem 5.2 and assertion 4. Assertion 6 follows from Assertion 5 and Corollary 5.8.

Corollary 11.3. Let X and Y be Lindelof p-spaces, and X or Y contain a
non-empty compact perfect subset. Then the conclusions of Theorem 11.2 hold true.

Corollary 11.4. Let X and Y be pseudocompact spaces and X or fY
contain a non-empty perfect subset. Then the conclusions of Theorem 11.2 hold true.

Corollary 11.5. Let X and Y be compact spaces and X or Y contain a
non-empty perfect subset. Then:
1. The assertions of Theorem 11.2 hold true.
2. If0 < a < f, then B;(X) is not ring isomorphic to By(Y).

Theorem 5 in [14] (see [22], Theorem 6.3.2) states that Assertion 2 of Corollary
11.5 holds true for all 0 < a < 3. This is in contradiction with Example 5.10. Hence
the proof in [14, 22] is not quite correct.

Corollary 11.6 (F. K. Dashiell [8] for compact metric spaces). Let X and Y
be first countable Lindelof p-spaces and X or Y contain a non-empty compact perfect
subset. If a # B, then B,(X) is not ring isomorphic to Bg(Y) and B (X) is not ring
isomorphic to By(Y).

Theorem 11.7. Let0 < a < 8 < N, Y be a compact space, containing
a non-empty perfect subset and X be a compact space satisfying one of the following
conditions:
. X contains no subspaces homeomorphic to SN .
. X 1is first countable space.
. X is sequential space.
. X 1is sequentially compact.
. Every closed infinite subset of X contains a non-trivial convergent sequence.
. X is scattered.
. The tightness t(X) < 2%,
. X is a hereditarily normal space.
. X is a hereditarily separable space.
Then B;(X) is not ring isomorphic to By(Y).
Proof. Implications 2 =3 -4 —-5—-1,6—-5—-1,8—=1and9—-7—1
are obvious.
If 0 < a < 3, then Theorem 11.7 follows from Theorem 11.2.

O 00~ W -
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Let 0 = a < B and ¥ : By(X) = C(X) o Bj(Y) be a ring isomorphism.

Then there exists some homeomorphism h of the compact space X onto the compact
space bg PY. By Proposition 7.9 there exists a countable subset Z of Y such that the

closure ® of Z in bgPY is homeomorphic to the Stone-Cech compactification SN of
the discrete space N. Hence SN is embedded in X. This contradiction complete the

proof. O
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